Skip to main content
Glama

MCP Toolbox for Databases

by googleapis
Apache 2.0
11,043
  • Linux
cloud-monitoring-query-prometheus.md3.38 kB
--- title: cloud-monitoring-query-prometheus type: docs weight: 1 description: The "cloud-monitoring-query-prometheus" tool fetches time series metrics for a project using a given prometheus query. --- The `cloud-monitoring-query-prometheus` tool fetches timeseries metrics data from Google Cloud Monitoring for a project using a given prometheus query. ## About The `cloud-monitoring-query-prometheus` tool allows you to query all metrics available in Google Cloud Monitoring using the Prometheus Query Language (PromQL). It's compatible with any of the following sources: - [cloud-monitoring](../../sources/cloud-monitoring.md) ## Prerequisites To use this tool, you need to have the following IAM role on your Google Cloud project: - `roles/monitoring.viewer` ## Arguments | Name | Type | Description | |-------------|--------|----------------------------------| | `projectId` | string | The Google Cloud project ID. | | `query` | string | The Prometheus query to execute. | ## Use Cases - **Ad-hoc analysis:** Quickly investigate performance issues by executing direct promql queries for a database instance. - **Prebuilt Configs:** Use the already added prebuilt tools mentioned in prebuilt-tools.md to query the databases system/query level metrics. Here are some common use cases for the `cloud-monitoring-query-prometheus` tool: - **Monitoring resource utilization:** Track CPU, memory, and disk usage for your database instance (Can use the [prebuilt tools](../../../reference/prebuilt-tools.md)). - **Monitoring query performance:** Monitor latency, execution_time, wait_time for database instance or even for the queries running (Can use the [prebuilt tools](../../../reference/prebuilt-tools.md)). - **System Health:** Get the overall system health for the database instance (Can use the [prebuilt tools](../../../reference/prebuilt-tools.md)). ## Examples Here are some examples of how to use the `cloud-monitoring-query-prometheus` tool. ```yaml tools: get_wait_time_metrics: kind: cloud-monitoring-query-prometheus source: cloud-monitoring-source description: | This tool fetches system wait time information for AlloyDB cluster, instance. Get the `projectID`, `clusterID` and `instanceID` from the user intent. To use this tool, you must provide the Google Cloud `projectId` and a PromQL `query`. Generate `query` using these metric details: metric: `alloydb.googleapis.com/instance/postgresql/wait_time`, monitored_resource: `alloydb.googleapis.com/Instance`. labels: `cluster_id`, `instance_id`, `wait_event_type`, `wait_event_name`. Basic time series example promql query: `avg_over_time({"__name__"="alloydb.googleapis.com/instance/postgresql/wait_time","monitored_resource"="alloydb.googleapis.com/Instance","instance_id"="alloydb-instance"}[5m])` ``` ## Reference | **field** | **type** | **required** | **description** | |-------------|:--------:|:------------:|------------------------------------------------------| | kind | string | true | Must be cloud-monitoring-query-prometheus. | | source | string | true | The name of an `cloud-monitoring` source. | | description | string | true | Description of the tool that is passed to the agent. |

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/googleapis/genai-toolbox'

If you have feedback or need assistance with the MCP directory API, please join our Discord server