Skip to main content
Glama

MCP Toolbox for Databases

by googleapis
Apache 2.0
11,024
  • Linux
_index.md17.6 kB
--- title: "Introduction" type: docs weight: 1 description: > An introduction to MCP Toolbox for Databases. --- MCP Toolbox for Databases is an open source MCP server for databases. It enables you to develop tools easier, faster, and more securely by handling the complexities such as connection pooling, authentication, and more. {{< notice note >}} This solution was originally named “Gen AI Toolbox for Databases” as its initial development predated MCP, but was renamed to align with recently added MCP compatibility. {{< /notice >}} ## Why Toolbox? Toolbox helps you build Gen AI tools that let your agents access data in your database. Toolbox provides: - **Simplified development**: Integrate tools to your agent in less than 10 lines of code, reuse tools between multiple agents or frameworks, and deploy new versions of tools more easily. - **Better performance**: Best practices such as connection pooling, authentication, and more. - **Enhanced security**: Integrated auth for more secure access to your data - **End-to-end observability**: Out of the box metrics and tracing with built-in support for OpenTelemetry. **⚡ Supercharge Your Workflow with an AI Database Assistant ⚡** Stop context-switching and let your AI assistant become a true co-developer. By [connecting your IDE to your databases with MCP Toolbox][connect-ide], you can delegate complex and time-consuming database tasks, allowing you to build faster and focus on what matters. This isn't just about code completion; it's about giving your AI the context it needs to handle the entire development lifecycle. Here’s how it will save you time: - **Query in Plain English**: Interact with your data using natural language right from your IDE. Ask complex questions like, *"How many orders were delivered in 2024, and what items were in them?"* without writing any SQL. - **Automate Database Management**: Simply describe your data needs, and let the AI assistant manage your database for you. It can handle generating queries, creating tables, adding indexes, and more. - **Generate Context-Aware Code**: Empower your AI assistant to generate application code and tests with a deep understanding of your real-time database schema. This accelerates the development cycle by ensuring the generated code is directly usable. - **Slash Development Overhead**: Radically reduce the time spent on manual setup and boilerplate. MCP Toolbox helps streamline lengthy database configurations, repetitive code, and error-prone schema migrations. Learn [how to connect your AI tools (IDEs) to Toolbox using MCP][connect-ide]. [connect-ide]: ../../how-to/connect-ide/ ## General Architecture Toolbox sits between your application's orchestration framework and your database, providing a control plane that is used to modify, distribute, or invoke tools. It simplifies the management of your tools by providing you with a centralized location to store and update tools, allowing you to share tools between agents and applications and update those tools without necessarily redeploying your application. ![architecture](./architecture.png) ## Getting Started ### Installing the server For the latest version, check the [releases page][releases] and use the following instructions for your OS and CPU architecture. [releases]: https://github.com/googleapis/genai-toolbox/releases <!-- {x-release-please-start-version} --> {{< tabpane text=true >}} {{% tab header="Binary" lang="en" %}} {{< tabpane text=true >}} {{% tab header="Linux (AMD64)" lang="en" %}} To install Toolbox as a binary on Linux (AMD64): ```sh # see releases page for other versions export VERSION=0.17.0 curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/linux/amd64/toolbox chmod +x toolbox ``` {{% /tab %}} {{% tab header="macOS (Apple Silicon)" lang="en" %}} To install Toolbox as a binary on macOS (Apple Silicon): ```sh # see releases page for other versions export VERSION=0.17.0 curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/darwin/arm64/toolbox chmod +x toolbox ``` {{% /tab %}} {{% tab header="macOS (Intel)" lang="en" %}} To install Toolbox as a binary on macOS (Intel): ```sh # see releases page for other versions export VERSION=0.17.0 curl -L -o toolbox https://storage.googleapis.com/genai-toolbox/v$VERSION/darwin/amd64/toolbox chmod +x toolbox ``` {{% /tab %}} {{% tab header="Windows (AMD64)" lang="en" %}} To install Toolbox as a binary on Windows (AMD64): ```powershell # see releases page for other versions $VERSION = "0.17.0" Invoke-WebRequest -Uri "https://storage.googleapis.com/genai-toolbox/v$VERSION/windows/amd64/toolbox.exe" -OutFile "toolbox.exe" ``` {{% /tab %}} {{< /tabpane >}} {{% /tab %}} {{% tab header="Container image" lang="en" %}} You can also install Toolbox as a container: ```sh # see releases page for other versions export VERSION=0.17.0 docker pull us-central1-docker.pkg.dev/database-toolbox/toolbox/toolbox:$VERSION ``` {{% /tab %}} {{% tab header="Homebrew" lang="en" %}} To install Toolbox using Homebrew on macOS or Linux: ```sh brew install mcp-toolbox ``` {{% /tab %}} {{% tab header="Compile from source" lang="en" %}} To install from source, ensure you have the latest version of [Go installed](https://go.dev/doc/install), and then run the following command: ```sh go install github.com/googleapis/genai-toolbox@v0.17.0 ``` {{% /tab %}} {{< /tabpane >}} <!-- {x-release-please-end} --> ### Running the server [Configure](../configure.md) a `tools.yaml` to define your tools, and then execute `toolbox` to start the server: ```sh ./toolbox --tools-file "tools.yaml" ``` {{< notice note >}} Toolbox enables dynamic reloading by default. To disable, use the `--disable-reload` flag. {{< /notice >}} #### Launching Toolbox UI To launch Toolbox's interactive UI, use the `--ui` flag. This allows you to test tools and toolsets with features such as authorized parameters. To learn more, visit [Toolbox UI](../../how-to/toolbox-ui/index.md). ```sh ./toolbox --ui ``` #### Homebrew Users If you installed Toolbox using Homebrew, the `toolbox` binary is available in your system path. You can start the server with the same command: ```sh toolbox --tools-file "tools.yaml" ``` You can use `toolbox help` for a full list of flags! To stop the server, send a terminate signal (`ctrl+c` on most platforms). For more detailed documentation on deploying to different environments, check out the resources in the [How-to section](../../how-to/) ### Integrating your application Once your server is up and running, you can load the tools into your application. See below the list of Client SDKs for using various frameworks: #### Python {{< tabpane text=true persist=header >}} {{% tab header="Core" lang="en" %}} Once you've installed the [Toolbox Core SDK](https://pypi.org/project/toolbox-core/), you can load tools: {{< highlight python >}} from toolbox_core import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application! tools = await client.load_toolset("toolset_name") {{< /highlight >}} For more detailed instructions on using the Toolbox Core SDK, see the [project's README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-core/README.md). {{% /tab %}} {{% tab header="LangChain" lang="en" %}} Once you've installed the [Toolbox LangChain SDK](https://pypi.org/project/toolbox-langchain/), you can load tools: {{< highlight python >}} from toolbox_langchain import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application! tools = client.load_toolset() {{< /highlight >}} For more detailed instructions on using the Toolbox LangChain SDK, see the [project's README](https://github.com/googleapis/mcp-toolbox-sdk-python/blob/main/packages/toolbox-langchain/README.md). {{% /tab %}} {{% tab header="Llamaindex" lang="en" %}} Once you've installed the [Toolbox Llamaindex SDK](https://github.com/googleapis/genai-toolbox-llamaindex-python), you can load tools: {{< highlight python >}} from toolbox_llamaindex import ToolboxClient # update the url to point to your server async with ToolboxClient("http://127.0.0.1:5000") as client: # these tools can be passed to your application tools = client.load_toolset() {{< /highlight >}} For more detailed instructions on using the Toolbox Llamaindex SDK, see the [project's README](https://github.com/googleapis/genai-toolbox-llamaindex-python/blob/main/README.md). {{% /tab %}} {{< /tabpane >}} #### Javascript/Typescript Once you've installed the [Toolbox Core SDK](https://www.npmjs.com/package/@toolbox-sdk/core), you can load tools: {{< tabpane text=true persist=header >}} {{% tab header="Core" lang="en" %}} {{< highlight javascript >}} import { ToolboxClient } from '@toolbox-sdk/core'; // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); {{< /highlight >}} {{% /tab %}} {{% tab header="LangChain/Langraph" lang="en" %}} {{< highlight javascript >}} import { ToolboxClient } from '@toolbox-sdk/core'; // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); // Define the basics of the tool: name, description, schema and core logic const getTool = (toolboxTool) => tool(currTool, { name: toolboxTool.getName(), description: toolboxTool.getDescription(), schema: toolboxTool.getParamSchema() }); // Use these tools in your Langchain/Langraph applications const tools = toolboxTools.map(getTool); {{< /highlight >}} {{% /tab %}} {{% tab header="Genkit" lang="en" %}} {{< highlight javascript >}} import { ToolboxClient } from '@toolbox-sdk/core'; import { genkit } from 'genkit'; // Initialise genkit const ai = genkit({ plugins: [ googleAI({ apiKey: process.env.GEMINI_API_KEY || process.env.GOOGLE_API_KEY }) ], model: googleAI.model('gemini-2.0-flash'), }); // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); // Define the basics of the tool: name, description, schema and core logic const getTool = (toolboxTool) => ai.defineTool({ name: toolboxTool.getName(), description: toolboxTool.getDescription(), schema: toolboxTool.getParamSchema() }, toolboxTool) // Use these tools in your Genkit applications const tools = toolboxTools.map(getTool); {{< /highlight >}} {{% /tab %}} {{% tab header="LlamaIndex" lang="en" %}} {{< highlight javascript >}} import { ToolboxClient } from '@toolbox-sdk/core'; import { tool } from "llamaindex"; // update the url to point to your server const URL = 'http://127.0.0.1:5000'; let client = new ToolboxClient(URL); // these tools can be passed to your application! const toolboxTools = await client.loadToolset('toolsetName'); // Define the basics of the tool: name, description, schema and core logic const getTool = (toolboxTool) => tool({ name: toolboxTool.getName(), description: toolboxTool.getDescription(), parameters: toolboxTool.getParamSchema(), execute: toolboxTool });; // Use these tools in your LlamaIndex applications const tools = toolboxTools.map(getTool); {{< /highlight >}} {{% /tab %}} {{< /tabpane >}} For more detailed instructions on using the Toolbox Core SDK, see the [project's README](https://github.com/googleapis/mcp-toolbox-sdk-js/blob/main/packages/toolbox-core/README.md). #### Go Once you've installed the [Toolbox Go SDK](https://pkg.go.dev/github.com/googleapis/mcp-toolbox-sdk-go/core), you can load tools: {{< tabpane text=true persist=header >}} {{% tab header="Core" lang="en" %}} {{< highlight go >}} package main import ( "context" "log" "github.com/googleapis/mcp-toolbox-sdk-go/core" ) func main() { // update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) if err != nil { log.Fatalf("Failed to create Toolbox client: %v", err) } // Framework agnostic tools tools, err := client.LoadToolset("toolsetName", ctx) if err != nil { log.Fatalf("Failed to load tools: %v", err) } } {{< /highlight >}} {{% /tab %}} {{% tab header="LangChain Go" lang="en" %}} {{< highlight go >}} package main import ( "context" "encoding/json" "log" "github.com/googleapis/mcp-toolbox-sdk-go/core" "github.com/tmc/langchaingo/llms" ) func main() { // Make sure to add the error checks // update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) if err != nil { log.Fatalf("Failed to create Toolbox client: %v", err) } // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) if err != nil { log.Fatalf("Failed to load tools: %v", err) } // Fetch the tool's input schema inputschema, err := tool.InputSchema() if err != nil { log.Fatalf("Failed to fetch inputSchema: %v", err) } var paramsSchema map[string]any _ = json.Unmarshal(inputschema, &paramsSchema) // Use this tool with LangChainGo langChainTool := llms.Tool{ Type: "function", Function: &llms.FunctionDefinition{ Name: tool.Name(), Description: tool.Description(), Parameters: paramsSchema, }, } } {{< /highlight >}} {{% /tab %}} {{% tab header="Genkit Go" lang="en" %}} {{< highlight go >}} package main import ( "context" "encoding/json" "log" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/genkit" "github.com/googleapis/mcp-toolbox-sdk-go/core" "github.com/googleapis/mcp-toolbox-sdk-go/tbgenkit" "github.com/invopop/jsonschema" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() g, err := genkit.Init(ctx) client, err := core.NewToolboxClient(URL) if err != nil { log.Fatalf("Failed to create Toolbox client: %v", err) } // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) if err != nil { log.Fatalf("Failed to load tools: %v", err) } // Convert the tool using the tbgenkit package // Use this tool with Genkit Go genkitTool, err := tbgenkit.ToGenkitTool(tool, g) if err != nil { log.Fatalf("Failed to convert tool: %v\n", err) } } {{< /highlight >}} {{% /tab %}} {{% tab header="Go GenAI" lang="en" %}} {{< highlight go >}} package main import ( "context" "encoding/json" "log" "github.com/googleapis/mcp-toolbox-sdk-go/core" "google.golang.org/genai" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) if err != nil { log.Fatalf("Failed to create Toolbox client: %v", err) } // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) if err != nil { log.Fatalf("Failed to load tools: %v", err) } // Fetch the tool's input schema inputschema, err := tool.InputSchema() if err != nil { log.Fatalf("Failed to fetch inputSchema: %v", err) } var schema *genai.Schema _ = json.Unmarshal(inputschema, &schema) funcDeclaration := &genai.FunctionDeclaration{ Name: tool.Name(), Description: tool.Description(), Parameters: schema, } // Use this tool with Go GenAI genAITool := &genai.Tool{ FunctionDeclarations: []*genai.FunctionDeclaration{funcDeclaration}, } } {{< /highlight >}} {{% /tab %}} {{% tab header="OpenAI Go" lang="en" %}} {{< highlight go >}} package main import ( "context" "encoding/json" "log" "github.com/googleapis/mcp-toolbox-sdk-go/core" openai "github.com/openai/openai-go" ) func main() { // Make sure to add the error checks // Update the url to point to your server URL := "http://127.0.0.1:5000" ctx := context.Background() client, err := core.NewToolboxClient(URL) if err != nil { log.Fatalf("Failed to create Toolbox client: %v", err) } // Framework agnostic tool tool, err := client.LoadTool("toolName", ctx) if err != nil { log.Fatalf("Failed to load tools: %v", err) } // Fetch the tool's input schema inputschema, err := tool.InputSchema() if err != nil { log.Fatalf("Failed to fetch inputSchema: %v", err) } var paramsSchema openai.FunctionParameters _ = json.Unmarshal(inputschema, &paramsSchema) // Use this tool with OpenAI Go openAITool := openai.ChatCompletionToolParam{ Function: openai.FunctionDefinitionParam{ Name: tool.Name(), Description: openai.String(tool.Description()), Parameters: paramsSchema, }, } } {{< /highlight >}} {{% /tab %}} {{< /tabpane >}} For more detailed instructions on using the Toolbox Go SDK, see the [project's README](https://github.com/googleapis/mcp-toolbox-sdk-go/blob/main/core/README.md). For end-to-end samples on using the Toolbox Go SDK with orchestration frameworks, see the [project's samples](https://github.com/googleapis/mcp-toolbox-sdk-go/tree/main/core/samples)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/googleapis/genai-toolbox'

If you have feedback or need assistance with the MCP directory API, please join our Discord server