// Copyright 2026 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tests contains end to end tests meant to verify the Toolbox Server
// works as expected when executed as a binary.
package tests
import (
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net/http"
"os"
"strings"
"testing"
"github.com/google/uuid"
"github.com/googleapis/genai-toolbox/internal/server/mcp/jsonrpc"
"github.com/jackc/pgx/v5/pgxpool"
)
var apiKey = os.Getenv("API_KEY")
// AddSemanticSearchConfig adds embedding models and semantic search tools to the config
// with configurable tool kind and SQL statements.
func AddSemanticSearchConfig(t *testing.T, config map[string]any, toolKind, insertStmt, searchStmt string) map[string]any {
config["embeddingModels"] = map[string]any{
"gemini_model": map[string]any{
"kind": "gemini",
"model": "gemini-embedding-001",
"apiKey": apiKey,
"dimension": 768,
},
}
tools, ok := config["tools"].(map[string]any)
if !ok {
t.Fatalf("unable to get tools from config")
}
tools["insert_docs"] = map[string]any{
"kind": toolKind,
"source": "my-instance",
"description": "Stores content and its vector embedding into the documents table.",
"statement": insertStmt,
"parameters": []any{
map[string]any{
"name": "content",
"type": "string",
"description": "The text content associated with the vector.",
},
map[string]any{
"name": "text_to_embed",
"type": "string",
"description": "The text content used to generate the vector.",
"embeddedBy": "gemini_model",
"valueFromParam": "content",
},
},
}
tools["search_docs"] = map[string]any{
"kind": toolKind,
"source": "my-instance",
"description": "Finds the most semantically similar document to the query vector.",
"statement": searchStmt,
"parameters": []any{
map[string]any{
"name": "query",
"type": "string",
"description": "The text content to search for.",
"embeddedBy": "gemini_model",
},
},
}
config["tools"] = tools
return config
}
// RunSemanticSearchToolInvokeTest runs the insert_docs and search_docs tools
// via both HTTP and MCP endpoints and verifies the output.
func RunSemanticSearchToolInvokeTest(t *testing.T, insertWant, mcpInsertWant, searchWant string) {
// Initialize MCP session once for the MCP test cases
sessionId := RunInitialize(t, "2024-11-05")
tcs := []struct {
name string
api string
isMcp bool
requestBody interface{}
want string
}{
{
name: "HTTP invoke insert_docs",
api: "http://127.0.0.1:5000/api/tool/insert_docs/invoke",
isMcp: false,
requestBody: `{"content": "The quick brown fox jumps over the lazy dog"}`,
want: insertWant,
},
{
name: "HTTP invoke search_docs",
api: "http://127.0.0.1:5000/api/tool/search_docs/invoke",
isMcp: false,
requestBody: `{"query": "fast fox jumping"}`,
want: searchWant,
},
{
name: "MCP invoke insert_docs",
api: "http://127.0.0.1:5000/mcp",
isMcp: true,
requestBody: jsonrpc.JSONRPCRequest{
Jsonrpc: "2.0",
Id: "mcp-insert-docs",
Request: jsonrpc.Request{
Method: "tools/call",
},
Params: map[string]any{
"name": "insert_docs",
"arguments": map[string]any{
"content": "The quick brown fox jumps over the lazy dog",
},
},
},
want: mcpInsertWant,
},
{
name: "MCP invoke search_docs",
api: "http://127.0.0.1:5000/mcp",
isMcp: true,
requestBody: jsonrpc.JSONRPCRequest{
Jsonrpc: "2.0",
Id: "mcp-search-docs",
Request: jsonrpc.Request{
Method: "tools/call",
},
Params: map[string]any{
"name": "search_docs",
"arguments": map[string]any{
"query": "fast fox jumping",
},
},
},
want: searchWant,
},
}
for _, tc := range tcs {
t.Run(tc.name, func(t *testing.T) {
var bodyReader io.Reader
headers := map[string]string{}
// Prepare Request Body and Headers
if tc.isMcp {
reqBytes, err := json.Marshal(tc.requestBody)
if err != nil {
t.Fatalf("failed to marshal mcp request: %v", err)
}
bodyReader = bytes.NewBuffer(reqBytes)
if sessionId != "" {
headers["Mcp-Session-Id"] = sessionId
}
} else {
bodyReader = bytes.NewBufferString(tc.requestBody.(string))
}
// Send Request
resp, respBody := RunRequest(t, http.MethodPost, tc.api, bodyReader, headers)
if resp.StatusCode != http.StatusOK {
t.Fatalf("response status code is not 200, got %d: %s", resp.StatusCode, string(respBody))
}
// Normalize Response to get the actual tool result string
var got string
if tc.isMcp {
var mcpResp struct {
Result struct {
Content []struct {
Text string `json:"text"`
} `json:"content"`
} `json:"result"`
}
if err := json.Unmarshal(respBody, &mcpResp); err != nil {
t.Fatalf("error parsing mcp response: %s", err)
}
if len(mcpResp.Result.Content) > 0 {
got = mcpResp.Result.Content[0].Text
}
} else {
var httpResp map[string]interface{}
if err := json.Unmarshal(respBody, &httpResp); err != nil {
t.Fatalf("error parsing http response: %s", err)
}
if res, ok := httpResp["result"].(string); ok {
got = res
}
}
if !strings.Contains(got, tc.want) {
t.Fatalf("unexpected value: got %q, want %q", got, tc.want)
}
})
}
}
// SetupPostgresVectorTable sets up the vector extension and a vector table
func SetupPostgresVectorTable(t *testing.T, ctx context.Context, pool *pgxpool.Pool) (string, func(*testing.T)) {
t.Helper()
if _, err := pool.Exec(ctx, "CREATE EXTENSION IF NOT EXISTS vector"); err != nil {
t.Fatalf("failed to create vector extension: %v", err)
}
tableName := "vector_table_" + strings.ReplaceAll(uuid.New().String(), "-", "")
createTableStmt := fmt.Sprintf(`CREATE TABLE %s (
id SERIAL PRIMARY KEY,
content TEXT,
embedding vector(768)
)`, tableName)
if _, err := pool.Exec(ctx, createTableStmt); err != nil {
t.Fatalf("failed to create table %s: %v", tableName, err)
}
return tableName, func(t *testing.T) {
if _, err := pool.Exec(ctx, fmt.Sprintf("DROP TABLE IF EXISTS %s", tableName)); err != nil {
t.Errorf("failed to drop table %s: %v", tableName, err)
}
}
}
func GetPostgresVectorSearchStmts(vectorTableName string) (string, string) {
insertStmt := fmt.Sprintf("INSERT INTO %s (content, embedding) VALUES ($1, $2)", vectorTableName)
searchStmt := fmt.Sprintf("SELECT id, content, embedding <-> $1 AS distance FROM %s ORDER BY distance LIMIT 1", vectorTableName)
return insertStmt, searchStmt
}