Skip to main content
Glama
gitPratikSingh

Weather MCP Server

search_locations

Find location names by entering a search query to identify places for weather data retrieval.

Instructions

Search for location names matching a query string

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYesSearch query for location name

Implementation Reference

  • Core implementation of the search_locations tool: searches OpenWeatherMap geo API for locations matching the query, with caching and mock fallback.
    async def search_locations(self, query: str) -> List[Dict]: """ Search for locations matching the query. Args: query: Search query string Returns: List of matching locations """ query = query.strip() # If no API key, return mock locations if not self.api_key: return self._get_mock_locations(query) try: async with httpx.AsyncClient() as client: url = "https://api.openweathermap.org/geo/1.0/direct" params = { "q": query, "limit": 5, "appid": self.api_key } response = await client.get(url, params=params, timeout=10.0) response.raise_for_status() data = response.json() locations = [] for item in data: locations.append({ "name": item.get("name", ""), "country": item.get("country", ""), "state": item.get("state", ""), "lat": item.get("lat", 0), "lon": item.get("lon", 0), }) return locations except httpx.HTTPError: # Fallback to mock locations on API error return self._get_mock_locations(query)
  • main.py:65-78 (registration)
    Tool registration in list_tools(): defines name, description, and input schema for search_locations.
    Tool( name="search_locations", description="Search for location names matching a query string", inputSchema={ "type": "object", "properties": { "query": { "type": "string", "description": "Search query for location name" } }, "required": ["query"] } ),
  • main.py:115-127 (handler)
    Dispatch handler in call_tool(): extracts query argument, validates, calls weather_api.search_locations, and returns JSON response.
    elif name == "search_locations": query = arguments.get("query", "") if not query: return [TextContent( type="text", text="Error: query parameter is required" )] locations = await weather_api.search_locations(query) return [TextContent( type="text", text=json.dumps(locations, indent=2) )]
  • Helper function providing mock location data when API key is missing or on API error.
    def _get_mock_locations(self, query: str) -> List[Dict]: """Return mock location search results for demo purposes.""" # Common cities that might match common_cities = [ {"name": "New York", "country": "US", "state": "New York", "lat": 40.7128, "lon": -74.0060}, {"name": "London", "country": "GB", "state": "", "lat": 51.5074, "lon": -0.1278}, {"name": "Paris", "country": "FR", "state": "", "lat": 48.8566, "lon": 2.3522}, {"name": "Tokyo", "country": "JP", "state": "", "lat": 35.6762, "lon": 139.6503}, {"name": "San Francisco", "country": "US", "state": "California", "lat": 37.7749, "lon": -122.4194}, ] # Filter by query (case-insensitive) query_lower = query.lower() matches = [city for city in common_cities if query_lower in city["name"].lower()] # If no matches, return all cities return matches if matches else common_cities[:3]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gitPratikSingh/weather_mcp_server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server