# Supabase MCP Server - Project Planning
## Project Overview
This project implements a Model Context Protocol (MCP) server that provides tools for interacting with a Supabase database. The server enables AI assistants to perform database operations through a standardized interface.
## Architecture
- **Transport Layer**: Stdio transport for communication
- **Protocol**: Model Context Protocol (MCP)
- **Framework**: FastMCP Python SDK
- **Database**: Supabase (PostgreSQL)
## Components
1. **MCP Server**
- Implements the Model Context Protocol
- Uses FastMCP for server implementation
- Communicates via Stdio transport
2. **Supabase Client**
- Handles authentication with Supabase
- Performs database operations
3. **MCP Tools**
- Read records from tables
- Create records in tables
- Update records in tables
- Delete records from tables
## Environment Configuration
- `SUPABASE_URL`: URL of the Supabase project
- `SUPABASE_SERVICE_ROLE_KEY`: Service role key for Supabase authentication
## File Structure
```
supabase-mcp/
├── server.py # Main MCP server implementation
├── supabase_client.py # Supabase client wrapper
├── requirements.txt # Python dependencies
├── .env.example # Example environment variables
├── README.md # Project documentation
├── PLANNING.md # Project planning (this file)
└── TASK.md # Task tracking
```
## Style Guidelines
- Follow PEP8 standards
- Use type hints for all functions
- Document functions with Google-style docstrings
- Format code with Black
- Use Pydantic for data validation
## Dependencies
- mcp
- supabase
- python-dotenv
MCP directory API
We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/gevans3000/supabase-mcp'
If you have feedback or need assistance with the MCP directory API, please join our Discord server