Skip to main content
Glama

Graphiti MCP Server

by getzep
CLAUDE.md4.92 kB
# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview Graphiti is a Python framework for building temporally-aware knowledge graphs designed for AI agents. It enables real-time incremental updates to knowledge graphs without batch recomputation, making it suitable for dynamic environments. Key features: - Bi-temporal data model with explicit tracking of event occurrence times - Hybrid retrieval combining semantic embeddings, keyword search (BM25), and graph traversal - Support for custom entity definitions via Pydantic models - Integration with Neo4j and FalkorDB as graph storage backends ## Development Commands ### Main Development Commands (run from project root) ```bash # Install dependencies uv sync --extra dev # Format code (ruff import sorting + formatting) make format # Lint code (ruff + pyright type checking) make lint # Run tests make test # Run all checks (format, lint, test) make check ``` ### Server Development (run from server/ directory) ```bash cd server/ # Install server dependencies uv sync --extra dev # Run server in development mode uvicorn graph_service.main:app --reload # Format, lint, test server code make format make lint make test ``` ### MCP Server Development (run from mcp_server/ directory) ```bash cd mcp_server/ # Install MCP server dependencies uv sync # Run with Docker Compose docker-compose up ``` ## Code Architecture ### Core Library (`graphiti_core/`) - **Main Entry Point**: `graphiti.py` - Contains the main `Graphiti` class that orchestrates all functionality - **Graph Storage**: `driver/` - Database drivers for Neo4j and FalkorDB - **LLM Integration**: `llm_client/` - Clients for OpenAI, Anthropic, Gemini, Groq - **Embeddings**: `embedder/` - Embedding clients for various providers - **Graph Elements**: `nodes.py`, `edges.py` - Core graph data structures - **Search**: `search/` - Hybrid search implementation with configurable strategies - **Prompts**: `prompts/` - LLM prompts for entity extraction, deduplication, summarization - **Utilities**: `utils/` - Maintenance operations, bulk processing, datetime handling ### Server (`server/`) - **FastAPI Service**: `graph_service/main.py` - REST API server - **Routers**: `routers/` - API endpoints for ingestion and retrieval - **DTOs**: `dto/` - Data transfer objects for API contracts ### MCP Server (`mcp_server/`) - **MCP Implementation**: `graphiti_mcp_server.py` - Model Context Protocol server for AI assistants - **Docker Support**: Containerized deployment with Neo4j ## Testing - **Unit Tests**: `tests/` - Comprehensive test suite using pytest - **Integration Tests**: Tests marked with `_int` suffix require database connections - **Evaluation**: `tests/evals/` - End-to-end evaluation scripts ## Configuration ### Environment Variables - `OPENAI_API_KEY` - Required for LLM inference and embeddings - `USE_PARALLEL_RUNTIME` - Optional boolean for Neo4j parallel runtime (enterprise only) - Provider-specific keys: `ANTHROPIC_API_KEY`, `GOOGLE_API_KEY`, `GROQ_API_KEY`, `VOYAGE_API_KEY` ### Database Setup - **Neo4j**: Version 5.26+ required, available via Neo4j Desktop - Database name defaults to `neo4j` (hardcoded in Neo4jDriver) - Override by passing `database` parameter to driver constructor - **FalkorDB**: Version 1.1.2+ as alternative backend - Database name defaults to `default_db` (hardcoded in FalkorDriver) - Override by passing `database` parameter to driver constructor ## Development Guidelines ### Code Style - Use Ruff for formatting and linting (configured in pyproject.toml) - Line length: 100 characters - Quote style: single quotes - Type checking with Pyright is enforced - Main project uses `typeCheckingMode = "basic"`, server uses `typeCheckingMode = "standard"` ### Testing Requirements - Run tests with `make test` or `pytest` - Integration tests require database connections and are marked with `_int` suffix - Use `pytest-xdist` for parallel test execution - Run specific test files: `pytest tests/test_specific_file.py` - Run specific test methods: `pytest tests/test_file.py::test_method_name` - Run only integration tests: `pytest tests/ -k "_int"` - Run only unit tests: `pytest tests/ -k "not _int"` ### LLM Provider Support The codebase supports multiple LLM providers but works best with services supporting structured output (OpenAI, Gemini). Other providers may cause schema validation issues, especially with smaller models. ### MCP Server Usage Guidelines When working with the MCP server, follow the patterns established in `mcp_server/cursor_rules.md`: - Always search for existing knowledge before adding new information - Use specific entity type filters (`Preference`, `Procedure`, `Requirement`) - Store new information immediately using `add_memory` - Follow discovered procedures and respect established preferences

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/getzep/graphiti'

If you have feedback or need assistance with the MCP directory API, please join our Discord server