Skip to main content
Glama
test_openai.py4.4 kB
""" Copyright 2024, Zep Software, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from collections.abc import Generator from typing import Any from unittest.mock import AsyncMock, MagicMock, patch import pytest from graphiti_core.embedder.openai import ( DEFAULT_EMBEDDING_MODEL, OpenAIEmbedder, OpenAIEmbedderConfig, ) from tests.embedder.embedder_fixtures import create_embedding_values def create_openai_embedding(multiplier: float = 0.1) -> MagicMock: """Create a mock OpenAI embedding with specified value multiplier.""" mock_embedding = MagicMock() mock_embedding.embedding = create_embedding_values(multiplier) return mock_embedding @pytest.fixture def mock_openai_response() -> MagicMock: """Create a mock OpenAI embeddings response.""" mock_result = MagicMock() mock_result.data = [create_openai_embedding()] return mock_result @pytest.fixture def mock_openai_batch_response() -> MagicMock: """Create a mock OpenAI batch embeddings response.""" mock_result = MagicMock() mock_result.data = [ create_openai_embedding(0.1), create_openai_embedding(0.2), create_openai_embedding(0.3), ] return mock_result @pytest.fixture def mock_openai_client() -> Generator[Any, Any, None]: """Create a mocked OpenAI client.""" with patch('openai.AsyncOpenAI') as mock_client: mock_instance = mock_client.return_value mock_instance.embeddings = MagicMock() mock_instance.embeddings.create = AsyncMock() yield mock_instance @pytest.fixture def openai_embedder(mock_openai_client: Any) -> OpenAIEmbedder: """Create an OpenAIEmbedder with a mocked client.""" config = OpenAIEmbedderConfig(api_key='test_api_key') client = OpenAIEmbedder(config=config) client.client = mock_openai_client return client @pytest.mark.asyncio async def test_create_calls_api_correctly( openai_embedder: OpenAIEmbedder, mock_openai_client: Any, mock_openai_response: MagicMock ) -> None: """Test that create method correctly calls the API and processes the response.""" # Setup mock_openai_client.embeddings.create.return_value = mock_openai_response # Call method result = await openai_embedder.create('Test input') # Verify API is called with correct parameters mock_openai_client.embeddings.create.assert_called_once() _, kwargs = mock_openai_client.embeddings.create.call_args assert kwargs['model'] == DEFAULT_EMBEDDING_MODEL assert kwargs['input'] == 'Test input' # Verify result is processed correctly assert result == mock_openai_response.data[0].embedding[: openai_embedder.config.embedding_dim] @pytest.mark.asyncio async def test_create_batch_processes_multiple_inputs( openai_embedder: OpenAIEmbedder, mock_openai_client: Any, mock_openai_batch_response: MagicMock ) -> None: """Test that create_batch method correctly processes multiple inputs.""" # Setup mock_openai_client.embeddings.create.return_value = mock_openai_batch_response input_batch = ['Input 1', 'Input 2', 'Input 3'] # Call method result = await openai_embedder.create_batch(input_batch) # Verify API is called with correct parameters mock_openai_client.embeddings.create.assert_called_once() _, kwargs = mock_openai_client.embeddings.create.call_args assert kwargs['model'] == DEFAULT_EMBEDDING_MODEL assert kwargs['input'] == input_batch # Verify all results are processed correctly assert len(result) == 3 assert result == [ mock_openai_batch_response.data[0].embedding[: openai_embedder.config.embedding_dim], mock_openai_batch_response.data[1].embedding[: openai_embedder.config.embedding_dim], mock_openai_batch_response.data[2].embedding[: openai_embedder.config.embedding_dim], ] if __name__ == '__main__': pytest.main(['-xvs', __file__])

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/getzep/graphiti'

If you have feedback or need assistance with the MCP directory API, please join our Discord server