Skip to main content
Glama
README.md7.17 kB
# Graphiti MCP Server Integration Tests This directory contains a comprehensive integration test suite for the Graphiti MCP Server using the official Python MCP SDK. ## Overview The test suite is designed to thoroughly test all aspects of the Graphiti MCP server with special consideration for LLM inference latency and system performance. ## Test Organization ### Core Test Modules - **`test_comprehensive_integration.py`** - Main integration test suite covering all MCP tools - **`test_async_operations.py`** - Tests for concurrent operations and async patterns - **`test_stress_load.py`** - Stress testing and load testing scenarios - **`test_fixtures.py`** - Shared fixtures and test utilities - **`test_mcp_integration.py`** - Original MCP integration tests - **`test_configuration.py`** - Configuration loading and validation tests ### Test Categories Tests are organized with pytest markers: - `unit` - Fast unit tests without external dependencies - `integration` - Tests requiring database and services - `slow` - Long-running tests (stress/load tests) - `requires_neo4j` - Tests requiring Neo4j - `requires_falkordb` - Tests requiring FalkorDB - `requires_openai` - Tests requiring OpenAI API key ## Installation ```bash # Install test dependencies uv add --dev pytest pytest-asyncio pytest-timeout pytest-xdist faker psutil # Install MCP SDK uv add mcp ``` ## Running Tests ### Quick Start ```bash # Run smoke tests (quick validation) python tests/run_tests.py smoke # Run integration tests with mock LLM python tests/run_tests.py integration --mock-llm # Run all tests python tests/run_tests.py all ``` ### Test Runner Options ```bash python tests/run_tests.py [suite] [options] Suites: unit - Unit tests only integration - Integration tests comprehensive - Comprehensive integration suite async - Async operation tests stress - Stress and load tests smoke - Quick smoke tests all - All tests Options: --database - Database backend (neo4j, falkordb) --mock-llm - Use mock LLM for faster testing --parallel N - Run tests in parallel with N workers --coverage - Generate coverage report --skip-slow - Skip slow tests --timeout N - Test timeout in seconds --check-only - Only check prerequisites ``` ### Examples ```bash # Quick smoke test with FalkorDB (default) python tests/run_tests.py smoke # Full integration test with Neo4j python tests/run_tests.py integration --database neo4j # Stress testing with parallel execution python tests/run_tests.py stress --parallel 4 # Run with coverage python tests/run_tests.py all --coverage # Check prerequisites only python tests/run_tests.py all --check-only ``` ## Test Coverage ### Core Operations - Server initialization and tool discovery - Adding memories (text, JSON, message) - Episode queue management - Search operations (semantic, hybrid) - Episode retrieval and deletion - Entity and edge operations ### Async Operations - Concurrent operations - Queue management - Sequential processing within groups - Parallel processing across groups ### Performance Testing - Latency measurement - Throughput testing - Batch processing - Resource usage monitoring ### Stress Testing - Sustained load scenarios - Spike load handling - Memory leak detection - Connection pool exhaustion - Rate limit handling ## Configuration ### Environment Variables ```bash # Database configuration export DATABASE_PROVIDER=falkordb # or neo4j export NEO4J_URI=bolt://localhost:7687 export NEO4J_USER=neo4j export NEO4J_PASSWORD=graphiti export FALKORDB_URI=redis://localhost:6379 # LLM configuration export OPENAI_API_KEY=your_key_here # or use --mock-llm # Test configuration export TEST_MODE=true export LOG_LEVEL=INFO ``` ### pytest.ini Configuration The `pytest.ini` file configures: - Test discovery patterns - Async mode settings - Test markers - Timeout settings - Output formatting ## Test Fixtures ### Data Generation The test suite includes comprehensive data generators: ```python from test_fixtures import TestDataGenerator # Generate test data company = TestDataGenerator.generate_company_profile() conversation = TestDataGenerator.generate_conversation() document = TestDataGenerator.generate_technical_document() ``` ### Test Client Simplified client creation: ```python from test_fixtures import graphiti_test_client async with graphiti_test_client(database="falkordb") as (session, group_id): # Use session for testing result = await session.call_tool('add_memory', {...}) ``` ## Performance Considerations ### LLM Latency Management The tests account for LLM inference latency through: 1. **Configurable timeouts** - Different timeouts for different operations 2. **Mock LLM option** - Fast testing without API calls 3. **Intelligent polling** - Adaptive waiting for episode processing 4. **Batch operations** - Testing efficiency of batched requests ### Resource Management - Memory leak detection - Connection pool monitoring - Resource usage tracking - Graceful degradation testing ## CI/CD Integration ### GitHub Actions ```yaml name: MCP Integration Tests on: [push, pull_request] jobs: test: runs-on: ubuntu-latest services: neo4j: image: neo4j:5.26 env: NEO4J_AUTH: neo4j/graphiti ports: - 7687:7687 steps: - uses: actions/checkout@v2 - name: Install dependencies run: | pip install uv uv sync --extra dev - name: Run smoke tests run: python tests/run_tests.py smoke --mock-llm - name: Run integration tests run: python tests/run_tests.py integration --database neo4j env: OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} ``` ## Troubleshooting ### Common Issues 1. **Database connection failures** ```bash # Check Neo4j curl http://localhost:7474 # Check FalkorDB redis-cli ping ``` 2. **API key issues** ```bash # Use mock LLM for testing without API key python tests/run_tests.py all --mock-llm ``` 3. **Timeout errors** ```bash # Increase timeout for slow systems python tests/run_tests.py integration --timeout 600 ``` 4. **Memory issues** ```bash # Skip stress tests on low-memory systems python tests/run_tests.py all --skip-slow ``` ## Test Reports ### Performance Report After running performance tests: ```python from test_fixtures import PerformanceBenchmark benchmark = PerformanceBenchmark() # ... run tests ... print(benchmark.report()) ``` ### Load Test Report Stress tests generate detailed reports: ``` LOAD TEST REPORT ================ Test Run 1: Total Operations: 100 Success Rate: 95.0% Throughput: 12.5 ops/s Latency (avg/p50/p95/p99/max): 0.8/0.7/1.5/2.1/3.2s ``` ## Contributing When adding new tests: 1. Use appropriate pytest markers 2. Include docstrings explaining test purpose 3. Use fixtures for common operations 4. Consider LLM latency in test design 5. Add timeout handling for long operations 6. Include performance metrics where relevant ## License See main project LICENSE file.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/getzep/graphiti'

If you have feedback or need assistance with the MCP directory API, please join our Discord server