Skip to main content
Glama

Convex MCP server

Official
by get-convex
schema.ts941 B
import { defineSchema, defineTable } from "convex/server"; import { v } from "convex/values"; export default defineSchema({ // @snippet start schemaOneTable foods: defineTable({ description: v.string(), cuisine: v.string(), embedding: v.array(v.float64()), }).vectorIndex("by_embedding", { vectorField: "embedding", dimensions: 1536, filterFields: ["cuisine"], }), // @snippet end schemaOneTable // @snippet start schemaTwoTables movieEmbeddings: defineTable({ embedding: v.array(v.float64()), genre: v.string(), }).vectorIndex("by_embedding", { vectorField: "embedding", dimensions: 1536, filterFields: ["genre"], }), movies: defineTable({ title: v.string(), genre: v.string(), description: v.string(), votes: v.number(), embeddingId: v.optional(v.id("movieEmbeddings")), }).index("by_embedding", ["embeddingId"]), // @snippet end schemaTwoTables });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/get-convex/convex-backend'

If you have feedback or need assistance with the MCP directory API, please join our Discord server