Skip to main content
Glama

Convex MCP server

Official
by get-convex
index.ts1.72 kB
import { version } from "convex"; interface Event { event: string; args?: object | null; } // Log an event to Big Brain. export function logEvent(eventName: string, props: object | null = null) { const data: Event = { event: eventName, }; if (props) { data.args = props; } const isDev = window.location.hostname.includes("localhost"); let apiHost = "https://api.convex.dev"; if (isDev) { apiHost = "http://127.0.0.1:8050"; } const endpoint = `${apiHost}/api/dashboard/event`; logEventInner(data, endpoint); } // Log an instance-specific event. The event is sent to the instance backend, rather than to Big Brain. export function logDeploymentEvent( eventName: string, instanceUrl: string, authHeader?: string, props: object | null = null, ) { const data: Event = { event: eventName, }; if (props) { data.args = props; } const isDev = window.location.hostname.includes("localhost"); let endpoint = `${instanceUrl}/api/event`; if (isDev && !instanceUrl.includes("127.0.0.1")) { endpoint = `http://127.0.0.1:8000/api/event`; } logEventInner(data, endpoint, authHeader); } function logEventInner(data: Event, endpoint: string, authHeader?: string) { fetch(endpoint, { method: "POST", headers: { "Content-Type": "application/json", "Convex-Client": `npm-${version}`, ...(authHeader ? { Authorization: authHeader } : {}), }, body: JSON.stringify(data), }) .then((response) => { if (!response.ok) { console.warn("Analytics request failed with response:", response.body); } }) .catch((error) => { console.warn("Analytics response failed with error:", error); }); }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/get-convex/convex-backend'

If you have feedback or need assistance with the MCP directory API, please join our Discord server