Skip to main content
Glama

Convex MCP server

Official
by get-convex
json.rs1.52 kB
use criterion::{ criterion_group, criterion_main, Criterion, }; use serde_json::json; use value::ConvexValue; fn simple_value() -> serde_json::Value { json!({ "a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, }) } fn nested_value() -> serde_json::Value { let mut v = json!("hi"); for _ in 0..64 { v = json!({ "nested": v }); } v } pub fn benchmark_serialize(c: &mut Criterion) { let value = ConvexValue::try_from(simple_value()).unwrap(); c.bench_function("to_json::simple", |b| b.iter(|| value.json_serialize())); let value = ConvexValue::try_from(nested_value()).unwrap(); c.bench_function("to_json::nested", |b| b.iter(|| value.json_serialize())); } pub fn benchmark_deserialize(c: &mut Criterion) { let value = serde_json::to_string(&simple_value()).unwrap(); c.bench_function("from_json::simple", |b| { b.iter(|| { ConvexValue::try_from(serde_json::from_str::<serde_json::Value>(&value).unwrap()) .unwrap() }) }); let value = serde_json::to_string(&nested_value()).unwrap(); c.bench_function("from_json::nested", |b| { b.iter(|| { ConvexValue::try_from(serde_json::from_str::<serde_json::Value>(&value).unwrap()) .unwrap() }) }); } criterion_group!(benches, benchmark_serialize, benchmark_deserialize); criterion_main!(benches);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/get-convex/convex-backend'

If you have feedback or need assistance with the MCP directory API, please join our Discord server