Skip to main content
Glama

MCP Server Replicate

stable_diffusion.py7.45 kB
"""Parameter templates for Stable Diffusion models.""" from typing import Dict, Any SDXL_PARAMETERS = { "id": "sdxl-base", "name": "SDXL Base Parameters", "description": "Default parameters for SDXL models with comprehensive options for high-quality image generation", "model_type": "stable-diffusion", "default_parameters": { "width": 1024, "height": 1024, "num_inference_steps": 50, "guidance_scale": 7.5, "prompt_strength": 1.0, "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "num_outputs": 1, "high_noise_frac": 0.8, "seed": None, "apply_watermark": True, }, "parameter_schema": { "type": "object", "properties": { "prompt": { "type": "string", "description": "Text prompt for image generation. Use descriptive language and artistic terms for better results.", "minLength": 1, "maxLength": 2000 }, "negative_prompt": { "type": "string", "description": "Text prompt for elements to avoid. Common defaults: 'ugly, blurry, low quality, distorted'", "maxLength": 2000 }, "width": { "type": "integer", "minimum": 512, "maximum": 2048, "multipleOf": 8, "description": "Image width in pixels. Must be multiple of 8. Larger sizes need more memory." }, "height": { "type": "integer", "minimum": 512, "maximum": 2048, "multipleOf": 8, "description": "Image height in pixels. Must be multiple of 8. Larger sizes need more memory." }, "num_inference_steps": { "type": "integer", "minimum": 1, "maximum": 150, "description": "Number of denoising steps. Higher values = better quality but slower generation." }, "guidance_scale": { "type": "number", "minimum": 1, "maximum": 20, "description": "How closely to follow the prompt. Higher values = more literal but may be less creative." }, "prompt_strength": { "type": "number", "minimum": 0, "maximum": 1, "description": "Strength of the prompt in image-to-image tasks. 1.0 = full prompt strength." }, "refine": { "type": "string", "enum": ["no_refiner", "expert_ensemble_refiner", "base_image_refiner"], "description": "Type of refinement to apply. expert_ensemble_refiner provides best quality." }, "scheduler": { "type": "string", "enum": ["DDIM", "DPM_MULTISTEP", "K_EULER", "PNDM", "KLMS"], "description": "Sampling method. K_EULER is a good default, DDIM for more deterministic results." }, "num_outputs": { "type": "integer", "minimum": 1, "maximum": 4, "description": "Number of images to generate in parallel. More outputs = longer generation time." }, "high_noise_frac": { "type": "number", "minimum": 0.0, "maximum": 1.0, "description": "Fraction of inference steps to use for high noise. Higher = more variation." }, "seed": { "type": ["integer", "null"], "minimum": 0, "maximum": 2147483647, "description": "Random seed for reproducible generation. null for random seed." }, "apply_watermark": { "type": "boolean", "description": "Whether to apply invisible watermarking to detect AI-generated images." } }, "required": ["prompt"] }, "version": "1.1.0", } SD_15_PARAMETERS = { "id": "sd-1.5-base", "name": "Stable Diffusion 1.5 Parameters", "description": "Default parameters for SD 1.5 models with comprehensive options for stable image generation", "model_type": "stable-diffusion", "default_parameters": { "width": 512, "height": 512, "num_inference_steps": 50, "guidance_scale": 7.5, "scheduler": "K_EULER", "num_outputs": 1, "seed": None, "apply_watermark": True, }, "parameter_schema": { "type": "object", "properties": { "prompt": { "type": "string", "description": "Text prompt for image generation. Use descriptive language and artistic terms.", "minLength": 1, "maxLength": 2000 }, "negative_prompt": { "type": "string", "description": "Text prompt for elements to avoid. Common defaults: 'ugly, blurry, low quality'", "maxLength": 2000 }, "width": { "type": "integer", "minimum": 256, "maximum": 1024, "multipleOf": 8, "description": "Image width in pixels. Must be multiple of 8. SD 1.5 works best at 512x512." }, "height": { "type": "integer", "minimum": 256, "maximum": 1024, "multipleOf": 8, "description": "Image height in pixels. Must be multiple of 8. SD 1.5 works best at 512x512." }, "num_inference_steps": { "type": "integer", "minimum": 1, "maximum": 150, "description": "Number of denoising steps. Higher values = better quality but slower." }, "guidance_scale": { "type": "number", "minimum": 1, "maximum": 20, "description": "How closely to follow the prompt. 7.5 is a good default." }, "scheduler": { "type": "string", "enum": ["DDIM", "DPM_MULTISTEP", "K_EULER", "PNDM", "KLMS"], "description": "Sampling method. K_EULER is a good default for quality/speed balance." }, "num_outputs": { "type": "integer", "minimum": 1, "maximum": 4, "description": "Number of images to generate in parallel. More outputs = longer time." }, "seed": { "type": ["integer", "null"], "minimum": 0, "maximum": 2147483647, "description": "Random seed for reproducible generation. null for random seed." }, "apply_watermark": { "type": "boolean", "description": "Whether to apply invisible watermarking to detect AI-generated images." } }, "required": ["prompt"] }, "version": "1.1.0", } # Export all templates TEMPLATES: Dict[str, Dict[str, Any]] = { "sdxl": SDXL_PARAMETERS, "sd15": SD_15_PARAMETERS, }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gerred/mcp-server-replicate'

If you have feedback or need assistance with the MCP directory API, please join our Discord server