Skip to main content
Glama
geored

Lumino

predictive_log_analyzer

Analyze historical log patterns with machine learning to predict potential failures before critical outages occur, enabling proactive system maintenance.

Instructions

Predict failures using ML analysis of historical log patterns before critical outages occur. Uses anomaly detection algorithms to correlate log patterns with failure events. Args: prediction_window: Time window - "1h", "6h", "24h", "7d" (default: "6h"). confidence_threshold: Min confidence for predictions 0.0-1.0 (default: 0.75). log_sources: Sources to analyze - pods, services, nodes (default: all). failure_types: Types to predict - pod_crash, resource_exhaustion, network_issues. historical_data_range: Historical data period (default: "30d"). model_refresh_interval: Model retrain frequency (default: "24h"). namespaces: Specific namespaces to analyze (default: auto-detect active namespaces). max_namespaces: Maximum namespaces to scan when auto-detecting (default: 20). Returns: Dict: Keys: predictions, model_performance, anomaly_scores, trend_analysis.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
prediction_windowNo6h
confidence_thresholdNo
log_sourcesNo
failure_typesNo
historical_data_rangeNo30d
model_refresh_intervalNo24h
namespacesNo
max_namespacesNo

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/geored/Lumino'

If you have feedback or need assistance with the MCP directory API, please join our Discord server