Skip to main content
Glama
setup.ts1.69 kB
import { Server } from '@modelcontextprotocol/sdk/server/index.js'; import { CallToolRequestSchema, ListToolsRequestSchema } from '@modelcontextprotocol/sdk/types.js'; import { handleListToolsRequest } from './handlers/listToolsHandler.js'; import { handleCallToolRequest } from './handlers/callToolHandler.js'; /** * Sets up and configures the MCP server with the appropriate request handlers. * * @param knowledgeGraphManager The KnowledgeGraphManager instance to use for request handling * @returns The configured server instance */ // eslint-disable-next-line @typescript-eslint/no-explicit-any export function setupServer(knowledgeGraphManager: any): Server { // Create server instance const server = new Server( { name: 'memento-mcp', version: '1.0.0', description: 'Memento MCP: Your persistent knowledge graph memory system', publisher: 'gannonh', }, { capabilities: { tools: {}, serverInfo: {}, // Add this capability to fix the error notifications: {}, // Add this capability for complete support logging: {}, // Add this capability for complete support }, } ); // Register request handlers server.setRequestHandler(ListToolsRequestSchema, async (_request) => { try { const result = await handleListToolsRequest(); return result; } catch (error: unknown) { throw error; } }); server.setRequestHandler(CallToolRequestSchema, async (request) => { try { const result = await handleCallToolRequest(request, knowledgeGraphManager); return result; } catch (error: unknown) { throw error; } }); return server; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gannonh/memento-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server