Skip to main content
Glama

Regen Network MCP Server

A Model Context Protocol (MCP) server providing programmatic access to the Regen Network blockchain - enabling AI agents and developers to interact with ecological credit markets.

Python 3.10+ License: MIT

Overview

This MCP server enables seamless interaction with Regen Network, a blockchain platform designed for ecological asset verification and trading. Through a standardized interface, you can:

  • šŸŒ Query ecological credit types, classes, and batches

  • šŸ’° Analyze marketplace dynamics and sell orders

  • šŸ“Š Perform portfolio impact analysis

  • šŸ” Compare methodology frameworks

  • ā›“ļø Access blockchain data (bank, governance, distribution modules)

  • šŸ¤– Enable AI agents to participate in environmental markets

What is Regen Network?

Regen Network is a specialized blockchain infrastructure for ecological credits, supporting diverse asset types:

  • Carbon Credits (CO2e sequestration and reduction)

  • Biodiversity Credits (habitat preservation and restoration)

  • Regenerative Agriculture Metrics (soil health, grazing management)

The network provides transparent, verifiable tracking of ecological projects with on-chain provenance.

What is MCP?

The Model Context Protocol is a standardized interface for connecting AI systems to external data sources and tools. This server implements MCP to make Regen Network accessible to AI agents like Claude, ChatGPT, and custom applications.

Features

šŸ› ļø 45+ Blockchain Tools

  • Bank Module (11 tools): Account balances, token supplies, denomination metadata

  • Distribution Module (9 tools): Validator rewards, delegator information, community pool

  • Governance Module (8 tools): Proposals, votes, deposits, tally results

  • Marketplace Module (5 tools): Sell orders, pricing, allowed denominations

  • Ecocredits Module (4 tools): Credit types, classes, projects, batches

  • Baskets Module (5 tools): Basket operations, balances, fees

  • Analytics Module (3 tools): Portfolio impact, market trends, methodology comparison

šŸ“– 8 Interactive Prompts

Guided workflows for common tasks:

  • Chain exploration and getting started

  • Ecocredit query workshop

  • Marketplace investigation

  • Project discovery

  • Credit batch analysis

  • Query builder assistance

  • Configuration setup

  • Full capabilities reference

šŸ”§ Enterprise Features

  • Multiple endpoint failover for reliability

  • Configurable caching layer

  • Type-safe Pydantic models

  • Async/await for performance

  • Comprehensive error handling with retryability signals

  • Health monitoring and metrics

šŸ”„ API Resilience (v3.1)

The client includes hardened retry/backoff logic:

  • Transient errors (5xx, 429, timeouts) are automatically retried with exponential backoff + jitter

  • Client errors (4xx except 429) fail immediately without wasting retry attempts

  • All errors include retryable and retry_after_ms fields for downstream clients

  • fetch_all_pages() helper eliminates agent-side pagination loops

šŸ·ļø Credit Class Name Resolution (v3.2)

Credit class names are now resolved directly from on-chain anchored metadata IRIs:

  • Authoritative names: schema:name from https://api.regen.network/data/v2/metadata-graph/{iri}

  • Source registry: Extracts regen:sourceRegistry (e.g., "City Forest Credits" for C02)

  • Caching: 1-hour TTL for resolved metadata, 5-minute TTL for failures

  • No guessing: Class names like C01="Verified Carbon Standard" come from the chain, not hardcoded mappings

šŸ“Š Summary Mode

The /ecocredits/batches endpoint supports aggregation:

# Get summary by credit type instead of paginating through all batches curl "https://regen.gaiaai.xyz/regen-api/ecocredits/batches?summary=true&fetch_all=true"

Returns totals for issued/tradable/retired credits by type, reducing common multi-page loops.

Installation

Prerequisites

  • Python 3.10 or higher

  • pip package manager

Quick Install

# Clone the repository git clone https://github.com/your-org/regen-python-mcp.git cd regen-python-mcp # Install dependencies pip install -r requirements.txt # Run the server python main.py

Configuration

The server uses environment variables for configuration. Create a .env file:

# Optional: Override default RPC endpoints REGEN_RPC_ENDPOINTS=https://regen-rpc.polkachu.com,https://rpc.cosmos.directory/regen # Optional: Override default REST endpoints REGEN_REST_ENDPOINTS=https://regen-api.polkachu.com,https://rest.cosmos.directory/regen # Optional: Configure caching REGEN_MCP_ENABLE_CACHE=true REGEN_MCP_CACHE_TTL_SECONDS=60 # Optional: Logging level REGEN_MCP_LOG_LEVEL=INFO

See src/mcp_server/config/settings.py for all configuration options.

Quick Start

Using with Claude Code / Claude Desktop

The repository includes pre-configured MCP setup files. See MCP_SETUP.md for complete instructions.

Quick Start:

  1. Files are already configured:

    • .mcp.json - Server connection config

    • .claude/settings.json - Enable MCP servers

  2. Install dependencies: pip install -r requirements.txt

  3. Restart Claude Code

Manual Configuration:

Add to your Claude Desktop or Claude Code configuration:

{ "mcpServers": { "regen-network": { "command": "/path/to/uv", "args": ["run", "--directory", "/path/to/regen-python-mcp", "python", "main.py"], "env": { "PYTHONPATH": "/path/to/regen-python-mcp/src" } } } }

Using with Python

from mcp.client import ClientSession, StdioServerParameters import asyncio async def main(): server_params = StdioServerParameters( command="python", args=["main.py"] ) async with ClientSession(server_params) as session: # List available tools tools = await session.list_tools() print(f"Available tools: {len(tools)}") # List credit types result = await session.call_tool("list_credit_types", {}) print(result) asyncio.run(main())

Example Queries

# Get all ecological credit types await client.call_tool("list_credit_types", {}) # List credit classes with pagination await client.call_tool("list_classes", {"limit": 10, "offset": 0}) # Get marketplace sell orders await client.call_tool("list_sell_orders", {"page": 1, "limit": 20}) # Analyze portfolio impact await client.call_tool("analyze_portfolio_impact", { "address": "regen1...", "analysis_type": "full" }) # Compare methodologies await client.call_tool("compare_credit_methodologies", { "class_ids": ["C01", "C02", "C03"] })

Using With ChatGPT Custom GPT Actions (OpenAPI)

OpenAI Custom GPT Actions enforce a maximum of 30 operations per OpenAPI spec, and Action sets cannot include duplicate domains. This repo supports a two-Action setup:

  • Ledger Action (on-chain): upload openapi-gpt-ledger.json with server https://regen.gaiaai.xyz (25 ops, /regen-api/* only)

  • KOI Action (knowledge): upload openapi-gpt-koi.json with server https://registry.regen.gaiaai.xyz (4 ops, /api/koi/* only)

To regenerate the GPT/Full + split Action specs deterministically:

python3 scripts/generate_openapi_schemas.py python3 scripts/validate_openapi_gpt.py --strict

Recommended instruction text for the GPT lives in:

  • gpt-instructions.md

  • gpt-knowledge.md

Architecture

regen-python-mcp/ ā”œā”€ā”€ main.py # Entry point ā”œā”€ā”€ requirements.txt # Python dependencies ā”œā”€ā”€ docs/ # Documentation │ ā”œā”€ā”€ regen_mcp_thesis.md # Vision and use cases │ └── regen_network_exploration_report.md ā”œā”€ā”€ tests/ # Test suite ā”œā”€ā”€ archive/ # Archived exploratory code └── src/ └── mcp_server/ ā”œā”€ā”€ server.py # Main MCP server (45 tools, 8 prompts) ā”œā”€ā”€ client/ # Regen Network API client ā”œā”€ā”€ config/ # Configuration management ā”œā”€ā”€ models/ # Pydantic data models ā”œā”€ā”€ tools/ # Tool implementations by module ā”œā”€ā”€ prompts/ # Interactive prompt guides ā”œā”€ā”€ resources/ # Dynamic resource handlers ā”œā”€ā”€ cache/ # Caching layer ā”œā”€ā”€ monitoring/ # Health and metrics └── scrapers/ # Data collection utilities

Design Principles

  • Modular Organization: Tools grouped by blockchain module for maintainability

  • Type Safety: Pydantic models throughout for runtime validation

  • Async-First: All I/O operations use async/await patterns

  • Graceful Degradation: Optional modules with fallback behavior

  • Configuration-Driven: Environment variables for deployment flexibility

Tool Reference

Bank Module (11 tools)

  • list_accounts, get_account, get_balance, get_all_balances

  • get_spendable_balances, get_total_supply, get_supply_of

  • get_bank_params, get_denoms_metadata, get_denom_metadata, get_denom_owners

Distribution Module (9 tools)

  • get_distribution_params, get_validator_outstanding_rewards

  • get_validator_commission, get_validator_slashes

  • get_delegation_rewards, get_delegation_total_rewards

  • get_delegator_validators, get_delegator_withdraw_address, get_community_pool

Governance Module (8 tools)

  • get_governance_proposal, list_governance_proposals

  • get_governance_vote, list_governance_votes

  • list_governance_deposits, get_governance_params

  • get_governance_deposit, get_governance_tally_result

Marketplace Module (5 tools)

  • get_sell_order, list_sell_orders

  • list_sell_orders_by_batch, list_sell_orders_by_seller, list_allowed_denoms

Ecocredits Module (4 tools)

  • list_credit_types, list_classes, list_projects, list_credit_batches

Baskets Module (5 tools)

  • list_baskets, get_basket, list_basket_balances

  • get_basket_balance, get_basket_fee

Analytics Module (3 tools)

  • analyze_portfolio_impact, analyze_market_trends, compare_credit_methodologies

Development

Setup Development Environment

# Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install in editable mode pip install -e . # Install development dependencies pip install pytest black mypy ruff

Running Tests

# Run all tests pytest tests/ # Run with coverage pytest --cov=src/mcp_server tests/ # Run specific test file pytest tests/test_prompts.py -v

Code Quality

# Format code black src/ # Type checking mypy src/ # Linting ruff check src/

Documentation

Use Cases

For AI Agents

  • Autonomous environmental market analysis

  • Automated portfolio optimization

  • Real-time credit price discovery

  • Methodology comparison and selection

For Developers

  • Building eco-finance applications

  • Integrating Regen data into dashboards

  • Creating custom analytics tools

  • Prototyping new market mechanisms

For Researchers

  • Environmental credit market analysis

  • Methodology effectiveness studies

  • Market liquidity and pricing research

  • Impact verification and tracking

Contributing

Contributions welcome! Please:

  1. Fork the repository

  2. Create a feature branch (git checkout -b feature/amazing-feature)

  3. Commit your changes (git commit -m 'Add amazing feature')

  4. Push to the branch (git push origin feature/amazing-feature)

  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

  • Regen Network - For building the ecological credit infrastructure

  • Anthropic - For the Model Context Protocol specification

  • The open source community


Built with 🌱 for a regenerative future

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gaiaaiagent/regen-python-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server