Skip to main content
Glama
merge-lora.py1.57 kB
#!/usr/bin/env python3 """ Convert ZigNet LoRA model to GGUF format for Ollama Merges LoRA adapters with base model and quantizes to Q4_K_M """ import os import sys import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel def merge_and_save(): """Merge LoRA adapters with base model""" print("🔄 Loading base model: Qwen/Qwen2.5-Coder-7B-Instruct") base_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-Coder-7B-Instruct", torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) print("🔄 Loading LoRA adapters from models/zignet-qwen-7b/final") model = PeftModel.from_pretrained( base_model, "models/zignet-qwen-7b/final" ) print("🔄 Merging LoRA with base model...") merged_model = model.merge_and_unload() print("🔄 Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained( "Qwen/Qwen2.5-Coder-7B-Instruct", trust_remote_code=True ) output_dir = "models/zignet-qwen-7b/merged" os.makedirs(output_dir, exist_ok=True) print(f"💾 Saving merged model to {output_dir}") merged_model.save_pretrained(output_dir, safe_serialization=True) tokenizer.save_pretrained(output_dir) print("✅ Merge complete!") print(f" Model saved to: {output_dir}") print("\n⚠️ Next step: Convert to GGUF with llama.cpp") print(" Run: pnpm run convert-to-gguf") if __name__ == "__main__": merge_and_save()

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fulgidus/zignet'

If you have feedback or need assistance with the MCP directory API, please join our Discord server