Skip to main content
Glama
freelancernasimofficial

NasCoder Perplexity MCP Ultra-Pro

perplexity_ask_pro

Query advanced AI models for research, reasoning, and search with structured responses and citations.

Instructions

Ultra-Pro Perplexity API with CORRECT 2025 models, full structured responses, caching, and advanced features. Supports search, research, reasoning, and offline models with proper parameters.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
messagesYesArray of conversation messages
modelNoPerplexity model to use (2025 correct models only)sonar-pro
formatNoResponse format typefull
optionsNoAdvanced options for the API call

Implementation Reference

  • MCP tool handler for 'perplexity_ask_pro': extracts parameters from args, validates API key, calls the core API method, parses and formats response, returns MCP-standard content.
    case "perplexity_ask_pro": const { messages, model = 'sonar-pro', format = 'full', options = {} } = args; if (!nascoderMCP.apiKey) { throw new Error('PERPLEXITY_API_KEY environment variable is required'); } const response = await nascoderMCP.callPerplexityAPI(messages, model, options); const parsed = nascoderMCP.parseResponse(response, format); const formatted = nascoderMCP.formatResponse(parsed, format); return { content: [formatted] };
  • JSON schema defining the input parameters for the 'perplexity_ask_pro' tool, including messages array, model selection from 2025 Perplexity models, response format, and advanced search/reasoning options.
    inputSchema: { type: "object", properties: { messages: { type: "array", items: { type: "object", properties: { role: { type: "string", description: "Message role (system, user, assistant)" }, content: { type: "string", description: "Message content" } }, required: ["role", "content"] }, description: "Array of conversation messages" }, model: { type: "string", enum: [ "sonar-pro", "sonar", "sonar-deep-research", "sonar-reasoning-pro", "sonar-reasoning", "r1-1776" ], default: "sonar-pro", description: "Perplexity model to use (2025 correct models only)" }, format: { type: "string", enum: ["simple", "with-citations", "structured", "full"], default: "full", description: "Response format type" }, options: { type: "object", properties: { maxTokens: { type: "number", default: 2000, description: "Maximum tokens (1-8000)" }, temperature: { type: "number", default: 0.2, description: "Randomness (0-2)" }, topP: { type: "number", default: 0.9, description: "Nucleus sampling (0-1)" }, topK: { type: "number", default: 0, description: "Top-k filtering (0 = disabled)" }, searchMode: { type: "string", enum: ["web", "academic"], default: "web", description: "Search mode - 'academic' prioritizes scholarly sources" }, reasoningEffort: { type: "string", enum: ["low", "medium", "high"], default: "medium", description: "Reasoning effort for reasoning models" }, returnImages: { type: "boolean", default: false }, returnRelatedQuestions: { type: "boolean", default: false }, searchRecency: { type: "string", description: "Filter by time (e.g., 'week', 'day')" }, searchDomains: { type: "array", items: { type: "string" }, description: "Filter search to specific domains (max 10)" }, searchAfterDate: { type: "string", description: "Search after date (MM/DD/YYYY)" }, searchBeforeDate: { type: "string", description: "Search before date (MM/DD/YYYY)" } }, description: "Advanced options for the API call" } }, required: ["messages"] }
  • index.js:598-673 (registration)
    Registration of the 'perplexity_ask_pro' tool in the TOOLS array used by ListToolsRequestHandler.
    name: "perplexity_ask_pro", description: "Ultra-Pro Perplexity API with CORRECT 2025 models, full structured responses, caching, and advanced features. " + "Supports search, research, reasoning, and offline models with proper parameters.", inputSchema: { type: "object", properties: { messages: { type: "array", items: { type: "object", properties: { role: { type: "string", description: "Message role (system, user, assistant)" }, content: { type: "string", description: "Message content" } }, required: ["role", "content"] }, description: "Array of conversation messages" }, model: { type: "string", enum: [ "sonar-pro", "sonar", "sonar-deep-research", "sonar-reasoning-pro", "sonar-reasoning", "r1-1776" ], default: "sonar-pro", description: "Perplexity model to use (2025 correct models only)" }, format: { type: "string", enum: ["simple", "with-citations", "structured", "full"], default: "full", description: "Response format type" }, options: { type: "object", properties: { maxTokens: { type: "number", default: 2000, description: "Maximum tokens (1-8000)" }, temperature: { type: "number", default: 0.2, description: "Randomness (0-2)" }, topP: { type: "number", default: 0.9, description: "Nucleus sampling (0-1)" }, topK: { type: "number", default: 0, description: "Top-k filtering (0 = disabled)" }, searchMode: { type: "string", enum: ["web", "academic"], default: "web", description: "Search mode - 'academic' prioritizes scholarly sources" }, reasoningEffort: { type: "string", enum: ["low", "medium", "high"], default: "medium", description: "Reasoning effort for reasoning models" }, returnImages: { type: "boolean", default: false }, returnRelatedQuestions: { type: "boolean", default: false }, searchRecency: { type: "string", description: "Filter by time (e.g., 'week', 'day')" }, searchDomains: { type: "array", items: { type: "string" }, description: "Filter search to specific domains (max 10)" }, searchAfterDate: { type: "string", description: "Search after date (MM/DD/YYYY)" }, searchBeforeDate: { type: "string", description: "Search before date (MM/DD/YYYY)" } }, description: "Advanced options for the API call" } }, required: ["messages"] } },
  • Primary helper method implementing the Perplexity API integration: validation, caching, rate limiting, correct 2025 payload with search/reasoning params, fetch call to /chat/completions, retries, response processing, and analytics.
    async callPerplexityAPI(messages, model = 'sonar-pro', options = {}) { const startTime = Date.now(); try { // Validate inputs if (!Array.isArray(messages) || messages.length === 0) { throw new Error('Messages array is required and cannot be empty'); } if (!this.apiKey) { throw new Error('PERPLEXITY_API_KEY environment variable is required'); } // Validate model exists if (!this.models[model]) { throw new Error(`Invalid model: ${model}. Available models: ${Object.keys(this.models).join(', ')}`); } // Check rate limit with fallback if (this.rateLimiter) { try { await this.rateLimiter.consume('perplexity-api'); } catch (rateLimitError) { throw new Error('Rate limit exceeded. Please wait before making more requests.'); } } // Check cache first with fallback let cached = null; if (this.cache) { try { const cacheKey = this.generateCacheKey(messages, model, options); cached = this.cache.get(cacheKey); } catch (cacheError) { this.logger.warn('Cache lookup failed:', cacheError.message); } } if (cached) { this.analytics.cacheHits++; this.logger.info('Cache hit for request'); return { ...cached, fromCache: true }; } this.analytics.cacheMisses++; // ✅ CORRECT 2025 PERPLEXITY API REQUEST PAYLOAD const payload = { model: model, messages: messages.map(msg => ({ role: msg.role || 'user', content: String(msg.content || '') })), max_tokens: Math.min(Math.max(options.maxTokens || 2000, 1), 8000), temperature: Math.min(Math.max(options.temperature || 0.2, 0), 2), top_p: Math.min(Math.max(options.topP || 0.9, 0), 1), top_k: Math.max(options.topK || 0, 0), stream: false, presence_penalty: Math.min(Math.max(options.presencePenalty || 0, -2), 2), frequency_penalty: Math.min(Math.max(options.frequencyPenalty || 0, -2), 2), // ✅ CORRECT 2025 SEARCH PARAMETERS search_mode: options.searchMode || 'web', // 'web' or 'academic' reasoning_effort: options.reasoningEffort || 'medium', // 'low', 'medium', 'high' (for reasoning models) // ✅ CORRECT FILTER PARAMETERS search_domain_filter: Array.isArray(options.searchDomains) ? options.searchDomains : [], return_images: options.returnImages || false, return_related_questions: options.returnRelatedQuestions || false, search_recency_filter: options.searchRecency || undefined, search_after_date_filter: options.searchAfterDate || undefined, search_before_date_filter: options.searchBeforeDate || undefined, last_updated_after_filter: options.lastUpdatedAfter || undefined, last_updated_before_filter: options.lastUpdatedBefore || undefined, // ✅ CORRECT WEB SEARCH OPTIONS web_search_options: options.webSearchOptions || undefined, // ✅ CORRECT RESPONSE FORMAT response_format: options.responseFormat || undefined }; // Remove undefined values to clean up payload Object.keys(payload).forEach(key => { if (payload[key] === undefined) { delete payload[key]; } }); // Make API call with retry logic let lastError; const maxRetries = 3; for (let attempt = 1; attempt <= maxRetries; attempt++) { try { const response = await fetch(`${this.baseUrl}/chat/completions`, { method: 'POST', headers: { 'Authorization': `Bearer ${this.apiKey}`, 'Content-Type': 'application/json', 'User-Agent': 'NasCoder-Perplexity-MCP/2.0' }, body: JSON.stringify(payload), timeout: 60000 // 60 second timeout for research models }); if (!response.ok) { const errorText = await response.text().catch(() => 'Unknown error'); throw new Error(`API Error ${response.status}: ${errorText}`); } const data = await response.json(); // Validate response structure if (!data || typeof data !== 'object') { throw new Error('Invalid response format from API'); } // Cache the response with error handling if (this.cache) { try { const cacheKey = this.generateCacheKey(messages, model, options); this.cache.set(cacheKey, data); } catch (cacheError) { this.logger.warn('Failed to cache response:', cacheError.message); } } // Update analytics const responseTime = Date.now() - startTime; this.analytics.totalRequests++; this.analytics.avgResponseTime = (this.analytics.avgResponseTime * (this.analytics.totalRequests - 1) + responseTime) / this.analytics.totalRequests; if (data.usage) { this.analytics.tokenUsage.total += data.usage.total_tokens || 0; this.analytics.tokenUsage.prompt += data.usage.prompt_tokens || 0; this.analytics.tokenUsage.completion += data.usage.completion_tokens || 0; } this.analytics.modelUsage[model] = (this.analytics.modelUsage[model] || 0) + 1; this.logger.info(`API call successful - Model: ${model}, Tokens: ${data.usage?.total_tokens || 0}, Time: ${responseTime}ms`); return { ...data, fromCache: false, responseTime }; } catch (error) { lastError = error; if (attempt < maxRetries) { const delay = Math.pow(2, attempt) * 1000; // Exponential backoff this.logger.warn(`API call attempt ${attempt} failed, retrying in ${delay}ms:`, error.message); await new Promise(resolve => setTimeout(resolve, delay)); } } } throw lastError; } catch (error) { this.analytics.errors++; this.logger.error('API call failed after all retries:', error.message); throw new Error(`Perplexity API call failed: ${error.message}`); } finally { this.saveAnalytics(); } }
  • Helper method to parse the raw Perplexity API response into structured data including answer, citations, search results, usage stats, and metadata.
    parseResponse(response, format = 'full') { try { const parsed = { id: response?.id || 'unknown', model: response?.model || 'unknown', created: response?.created || Date.now(), fromCache: response?.fromCache || false, responseTime: response?.responseTime || 0, answer: '', citations: [], searchResults: [], relatedQuestions: [], usage: {}, metadata: { searchContextSize: null, finishReason: null, reasoningTokens: null }, rawResponse: format === 'full' ? response : null }; // Extract main answer with error handling try { if (response?.choices && Array.isArray(response.choices) && response.choices.length > 0) { const choice = response.choices[0]; if (choice?.message?.content) { parsed.answer = String(choice.message.content); } if (choice?.finish_reason) { parsed.metadata.finishReason = choice.finish_reason; } } } catch (error) { this.logger.warn('Failed to extract answer from response:', error.message); parsed.answer = 'Error extracting answer from response'; } // Extract citations with error handling try { if (response?.citations && Array.isArray(response.citations)) { parsed.citations = response.citations.filter(c => typeof c === 'string'); } } catch (error) { this.logger.warn('Failed to extract citations:', error.message); } // Extract search results with error handling try { if (response?.search_results && Array.isArray(response.search_results)) { parsed.searchResults = response.search_results.map(result => ({ title: result?.title || 'No title', url: result?.url || '', date: result?.date || null })); } } catch (error) { this.logger.warn('Failed to extract search results:', error.message); } // Extract usage stats with error handling try { if (response?.usage && typeof response.usage === 'object') { parsed.usage = { prompt_tokens: response.usage.prompt_tokens || 0, completion_tokens: response.usage.completion_tokens || 0, total_tokens: response.usage.total_tokens || 0, search_context_size: response.usage.search_context_size || null, citation_tokens: response.usage.citation_tokens || 0, num_search_queries: response.usage.num_search_queries || 0, reasoning_tokens: response.usage.reasoning_tokens || 0 }; parsed.metadata.searchContextSize = response.usage.search_context_size; parsed.metadata.reasoningTokens = response.usage.reasoning_tokens; } } catch (error) { this.logger.warn('Failed to extract usage stats:', error.message); } return parsed; } catch (error) { this.logger.error('Failed to parse response:', error.message); return { id: 'error', model: 'unknown', created: Date.now(), fromCache: false, responseTime: 0, answer: `Error parsing response: ${error.message}`, citations: [], searchResults: [], relatedQuestions: [], usage: {}, metadata: { searchContextSize: null, finishReason: 'error', reasoningTokens: null }, rawResponse: null }; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/freelancernasimofficial/nascoder-perplexity-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server