Skip to main content
Glama

TimeLooker MCP Server

cleanup_failed_stack.py•1.62 kB
#!/usr/bin/env python3 """ Clean up a failed TimeLooker stack deployment. """ import os import sys import subprocess from pathlib import Path def run_command(command, cwd=None): """Run a shell command and return the result.""" print(f"Running: {command}") # Set environment variable to silence Node.js version warning env = os.environ.copy() env['JSII_SILENCE_WARNING_UNTESTED_NODE_VERSION'] = '1' result = subprocess.run(command, shell=True, cwd=cwd, capture_output=True, text=True, env=env) if result.returncode != 0: print(f"Warning: {result.stderr}") return None return result.stdout.strip() def main(): """Clean up the failed stack.""" project_root = Path(__file__).parent.parent infrastructure_dir = project_root / "infrastructure" print("🧹 Cleaning up failed TimeLooker stack...") # Check if AWS CLI is configured try: run_command("aws sts get-caller-identity") print("āœ… AWS CLI is configured") except: print("āŒ AWS CLI not configured. Please run 'aws configure' first.") sys.exit(1) # Destroy the stack print("\nšŸ—‘ļø Destroying failed stack...") output = run_command("cdk destroy --force", cwd=infrastructure_dir) if output is not None: print("āœ… Stack cleanup completed") print("\nYou can now run the deployment script again:") print("python scripts/deploy_infrastructure.py") else: print("āš ļø Stack cleanup may have had issues, but you can try deploying again") if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fortnightly-devs/mcp-x402-task-scheduler'

If you have feedback or need assistance with the MCP directory API, please join our Discord server