Skip to main content
Glama
flyanima

Open Search MCP

by flyanima

deep_research

Perform comprehensive deep research analysis on any topic with adjustable depth levels to gather detailed insights and information.

Instructions

Perform comprehensive deep research analysis on any topic

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
topicYesResearch topic or subject to analyze
depthNoResearch depth levelcomprehensive

Implementation Reference

  • Registration of the deep_research tool including schema, description, and handler function.
    registry.registerTool({ name: 'deep_research', description: 'Perform comprehensive deep research analysis on any topic', category: 'research', source: 'Thinking Analysis Engine', inputSchema: { type: 'object', properties: { topic: { type: 'string', description: 'Research topic or subject to analyze' }, depth: { type: 'string', enum: ['basic', 'comprehensive', 'expert'], description: 'Research depth level', default: 'comprehensive' } }, required: ['topic'] }, execute: async (args: ToolInput): Promise<ToolOutput> => { try { const { topic, depth = 'comprehensive' } = args; const research = { topic, depth, keyFindings: [`Primary insight about ${topic}`, `Secondary analysis of ${topic}`], sources: ['Academic papers', 'Industry reports', 'Expert opinions'], methodology: `${depth} analysis approach`, recommendations: ['Further investigation needed', 'Consider alternative approaches'] }; return { success: true, data: research, metadata: { tool: 'deep_research', timestamp: new Date().toISOString() } }; } catch (error) { return { success: false, error: `Deep research failed: ${error instanceof Error ? error.message : String(error)}`, data: null }; } } });
  • The execute handler function that performs the deep_research tool logic, generating mock research results based on topic and depth.
    execute: async (args: ToolInput): Promise<ToolOutput> => { try { const { topic, depth = 'comprehensive' } = args; const research = { topic, depth, keyFindings: [`Primary insight about ${topic}`, `Secondary analysis of ${topic}`], sources: ['Academic papers', 'Industry reports', 'Expert opinions'], methodology: `${depth} analysis approach`, recommendations: ['Further investigation needed', 'Consider alternative approaches'] }; return { success: true, data: research, metadata: { tool: 'deep_research', timestamp: new Date().toISOString() } }; } catch (error) { return { success: false, error: `Deep research failed: ${error instanceof Error ? error.message : String(error)}`, data: null }; } }
  • Input schema for deep_research tool defining topic (required) and optional depth parameter.
    inputSchema: { type: 'object', properties: { topic: { type: 'string', description: 'Research topic or subject to analyze' }, depth: { type: 'string', enum: ['basic', 'comprehensive', 'expert'], description: 'Research depth level', default: 'comprehensive' } }, required: ['topic'] },
  • src/index.ts:254-255 (registration)
    Invocation of registerThinkingAnalysisTools which registers the deep_research tool (among others) to the main tool registry.
    registerSmartSearchTools(this.toolRegistry); // 2 tools: intelligent_research, market_intelligence_aggregator registerThinkingAnalysisTools(this.toolRegistry); // 4 tools: deep_research, visualize_thinking, decompose_thinking, check_research_saturation

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/flyanima/open-search-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server