Skip to main content
Glama

Genkit MCP

Official
by firebase
index.ts10.1 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { googleAI } from '@genkit-ai/google-genai'; import * as fs from 'fs'; import { MediaPart, genkit, z } from 'genkit'; import { Readable } from 'stream'; import wav from 'wav'; const ai = genkit({ plugins: [ // Provide the key via the GOOGLE_GENAI_API_KEY environment variable or arg { apiKey: 'yourkey'} googleAI({ experimental_debugTraces: true }), ], }); ai.defineFlow('basic-hi', async () => { const { text } = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: 'You are a helpful AI assistant named Walt, say hello', }); return text; }); // Multimodal input ai.defineFlow('multimodal-input', async () => { const photoBase64 = fs.readFileSync('photo.jpg', { encoding: 'base64' }); const { text } = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: [ { text: 'describe this photo' }, { media: { contentType: 'image/jpeg', url: `data:image/jpeg;base64,${photoBase64}`, }, }, ], }); return text; }); // YouTube videos ai.defineFlow('youtube-videos', async (_, { sendChunk }) => { const { text } = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: [ { text: 'transcribe this video', }, { media: { url: 'https://www.youtube.com/watch?v=3p1P5grjXIQ', contentType: 'video/mp4', }, }, ], }); return text; }); // streaming ai.defineFlow('streaming', async (_, { sendChunk }) => { const { stream } = ai.generateStream({ model: googleAI.model('gemini-2.5-flash'), prompt: 'Write a poem about AI.', }); let poem = ''; for await (const chunk of stream) { poem += chunk.text; sendChunk(chunk.text); } return poem; }); // Search grounding ai.defineFlow('search-grounding', async () => { const { text, raw } = await ai.generate({ model: googleAI.model('gemini-2.5-flash'), prompt: 'Who is Albert Einstein?', config: { tools: [{ googleSearch: {} }], }, }); return { text, groundingMetadata: (raw as any)?.candidates[0]?.groundingMetadata, }; }); const getWeather = ai.defineTool( { name: 'getWeather', inputSchema: z.object({ location: z .string() .describe( 'Location for which to get the weather, ex: San-Francisco, CA' ), }), description: 'used to get current weather for a location', }, async (input) => { // pretend we call an actual API return { location: input.location, temperature_celcius: 21.5, conditions: 'cloudy', }; } ); const celsiusToFahrenheit = ai.defineTool( { name: 'celsiusToFahrenheit', inputSchema: z.object({ celsius: z.number().describe('Temperature in Celsius'), }), description: 'Converts Celsius to Fahrenheit', }, async ({ celsius }) => { return (celsius * 9) / 5 + 32; } ); // Tool calling with Gemini ai.defineFlow( { name: 'toolCalling', inputSchema: z.string().default('Paris, France'), outputSchema: z.string(), streamSchema: z.any(), }, async (location, { sendChunk }) => { const { response, stream } = ai.generateStream({ model: googleAI.model('gemini-2.5-flash'), config: { temperature: 1, }, tools: [getWeather, celsiusToFahrenheit], prompt: `What's the weather in ${location}? Convert the temperature to Fahrenheit.`, }); for await (const chunk of stream) { sendChunk(chunk); } return (await response).text; } ); const RpgCharacterSchema = z.object({ name: z.string().describe('name of the character'), backstory: z.string().describe("character's backstory, about a paragraph"), weapons: z.array(z.string()), class: z.enum(['RANGER', 'WIZZARD', 'TANK', 'HEALER', 'ENGINEER']), }); // A simple example of structured output. ai.defineFlow( { name: 'structured-output', inputSchema: z.string().default('Glorb'), outputSchema: RpgCharacterSchema, }, async (name, { sendChunk }) => { const { response, stream } = ai.generateStream({ model: googleAI.model('gemini-2.5-flash'), config: { temperature: 2, // we want creativity }, output: { schema: RpgCharacterSchema }, prompt: `Generate an RPC character called ${name}`, }); for await (const chunk of stream) { sendChunk(chunk.output); } return (await response).output!; } ); // Gemini reasoning example. ai.defineFlow('reasoning', async (_, { sendChunk }) => { const { message } = await ai.generate({ prompt: 'what is heavier, one kilo of steel or one kilo of feathers', model: googleAI.model('gemini-2.5-pro'), config: { thinkingConfig: { thinkingBudget: 1024, includeThoughts: true, }, }, onChunk: sendChunk, }); return message; }); // Image editing with Gemini. ai.defineFlow('gemini-image-editing', async (_) => { const plant = fs.readFileSync('palm_tree.png', { encoding: 'base64' }); const room = fs.readFileSync('my_room.png', { encoding: 'base64' }); const { media } = await ai.generate({ model: googleAI.model('gemini-2.5-flash-image-preview'), prompt: [ { text: 'add the plant to my room' }, { media: { url: `data:image/png;base64,${plant}` } }, { media: { url: `data:image/png;base64,${room}` } }, ], config: { responseModalities: ['TEXT', 'IMAGE'], }, }); return media; }); // A simple example of image generation with Gemini. ai.defineFlow('imagen-image-generation', async (_) => { const { media } = await ai.generate({ model: googleAI.model('imagen-3.0-generate-002'), prompt: `generate an image of a banana riding a bicycle`, }); return media; }); // TTS sample ai.defineFlow( { name: 'tts', inputSchema: z .string() .default( 'Gemini is amazing. Can say things like: glorg, blub-blub, and ayeeeeee!!!' ), outputSchema: z.object({ media: z.string() }), }, async (prompt) => { const { media } = await ai.generate({ model: googleAI.model('gemini-2.5-flash-preview-tts'), config: { responseModalities: ['AUDIO'], // For all available options see https://ai.google.dev/gemini-api/docs/speech-generation#javascript speechConfig: { voiceConfig: { prebuiltVoiceConfig: { voiceName: 'Algenib' }, }, }, }, prompt, }); if (!media) { throw new Error('no media returned'); } const audioBuffer = Buffer.from( media.url.substring(media.url.indexOf(',') + 1), 'base64' ); return { media: 'data:audio/wav;base64,' + (await toWav(audioBuffer)), }; } ); async function toWav( pcmData: Buffer, channels = 1, rate = 24000, sampleWidth = 2 ): Promise<string> { return new Promise((resolve, reject) => { // This code depends on `wav` npm library. const writer = new wav.Writer({ channels, sampleRate: rate, bitDepth: sampleWidth * 8, }); let bufs = [] as any[]; writer.on('error', reject); writer.on('data', function (d) { bufs.push(d); }); writer.on('end', function () { resolve(Buffer.concat(bufs).toString('base64')); }); writer.write(pcmData); writer.end(); }); } // An example of using Ver 2 model to make a static photo move. ai.defineFlow('photo-move-veo', async (_, { sendChunk }) => { const startingImage = fs.readFileSync('photo.jpg', { encoding: 'base64' }); let { operation } = await ai.generate({ model: googleAI.model('veo-2.0-generate-001'), prompt: [ { text: 'make the subject in the photo move', }, { media: { contentType: 'image/jpeg', url: `data:image/jpeg;base64,${startingImage}`, }, }, ], config: { durationSeconds: 5, aspectRatio: '9:16', personGeneration: 'allow_adult', }, }); if (!operation) { throw new Error('Expected the model to return an operation'); } while (!operation.done) { sendChunk('check status of operation ' + operation.id); operation = await ai.checkOperation(operation); await new Promise((resolve) => setTimeout(resolve, 5000)); } if (operation.error) { sendChunk('Error: ' + operation.error.message); throw new Error('failed to generate video: ' + operation.error.message); } // operation done, download generated video to disk const video = operation.output?.message?.content.find((p) => !!p.media); if (!video) { throw new Error('Failed to find the generated video'); } sendChunk('Writing results to photo.mp4'); await downloadVideo(video, 'photo.mp4'); sendChunk('Done!'); return operation; }); function getApiKeyFromEnvVar(): string | undefined { return ( process.env.GEMINI_API_KEY || process.env.GOOGLE_API_KEY || process.env.GOOGLE_GENAI_API_KEY ); } async function downloadVideo(video: MediaPart, path: string) { const fetch = (await import('node-fetch')).default; const videoDownloadResponse = await fetch( `${video.media!.url}&key=${getApiKeyFromEnvVar()}` ); if ( !videoDownloadResponse || videoDownloadResponse.status !== 200 || !videoDownloadResponse.body ) { throw new Error('Failed to fetch video'); } Readable.from(videoDownloadResponse.body).pipe(fs.createWriteStream(path)); }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server