Skip to main content
Glama

Genkit MCP

Official
by firebase
imagen_test.ts14.6 kB
/** * Copyright 2025 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import * as assert from 'assert'; import { MessageData } from 'genkit'; import { GenerateRequest, getBasicUsageStats } from 'genkit/model'; import { afterEach, beforeEach, describe, it } from 'node:test'; import * as sinon from 'sinon'; import { getGenkitClientHeader } from '../../src/common/utils.js'; import { getGoogleAIUrl } from '../../src/googleai/client.js'; import { ImagenConfig, ImagenConfigSchema, TEST_ONLY, defineModel, model, } from '../../src/googleai/imagen.js'; import { ImagenPredictRequest, ImagenPredictResponse, ImagenPrediction, } from '../../src/googleai/types.js'; import { API_KEY_FALSE_ERROR, MISSING_API_KEY_ERROR, } from '../../src/googleai/utils.js'; const { toImagenParameters, fromImagenPrediction } = TEST_ONLY; describe('Google AI Imagen', () => { describe('KNOWN_MODELS', () => { it('should contain non-zero number of models', () => { assert.ok(Object.keys(TEST_ONLY.KNOWN_MODELS).length > 0); }); }); describe('model()', () => { it('should return a ModelReference for a known model', () => { const modelName = 'imagen-3.0-generate-002'; const ref = model(modelName); assert.strictEqual(ref.name, `googleai/${modelName}`); assert.ok(ref.info?.supports?.media); }); it('should return a ModelReference for an unknown model using generic info', () => { const modelName = 'imagen-unknown-model'; const ref = model(modelName); assert.strictEqual(ref.name, `googleai/${modelName}`); assert.deepStrictEqual(ref.info, TEST_ONLY.GENERIC_MODEL.info); }); it('should apply config to a known model', () => { const modelName = 'imagen-3.0-generate-002'; const config: ImagenConfig = { numberOfImages: 2 }; const ref = model(modelName, config); assert.strictEqual(ref.name, `googleai/${modelName}`); assert.deepStrictEqual(ref.config, config); }); it('should apply config to an unknown model', () => { const modelName = 'imagen-unknown-model'; const config: ImagenConfig = { aspectRatio: '16:9' }; const ref = model(modelName, config); assert.strictEqual(ref.name, `googleai/${modelName}`); assert.deepStrictEqual(ref.config, config); }); it('should handle model name with prefix', () => { const modelName = 'models/imagen-3.0-generate-002'; const ref = model(modelName); assert.strictEqual(ref.name, 'googleai/imagen-3.0-generate-002'); }); }); describe('toImagenParameters', () => { const baseRequest: GenerateRequest<typeof ImagenConfigSchema> = { messages: [], }; it('should set default sampleCount to 1', () => { const result = toImagenParameters(baseRequest); assert.strictEqual(result.sampleCount, 1); }); it('should use config.numberOfImages for sampleCount', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { ...baseRequest, config: { numberOfImages: 3 }, }; const result = toImagenParameters(request); assert.strictEqual(result.sampleCount, 3); }); it('should include other config parameters but exclude apiKey', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { ...baseRequest, config: { aspectRatio: '16:9', personGeneration: 'allow_adult', apiKey: 'test-key', // This should be excluded from the result numberOfImages: 1, }, }; const result = toImagenParameters(request); assert.strictEqual(result.sampleCount, 1); assert.strictEqual(result.aspectRatio, '16:9'); assert.strictEqual(result.personGeneration, 'allow_adult'); assert.strictEqual( result.hasOwnProperty('apiKey'), false, 'apiKey should not be in parameters' ); }); it('should omit undefined or null config parameters', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { ...baseRequest, config: { aspectRatio: undefined, personGeneration: null as any, numberOfImages: 1, }, }; const result = toImagenParameters(request); assert.strictEqual(result.sampleCount, 1); assert.strictEqual(result.hasOwnProperty('aspectRatio'), false); assert.strictEqual(result.hasOwnProperty('personGeneration'), false); }); }); describe('fromImagenPrediction', () => { it('should convert ImagenPrediction to MediaPart', () => { const prediction: ImagenPrediction = { bytesBase64Encoded: 'dGVzdGJ5dGVz', mimeType: 'image/png', }; const result = fromImagenPrediction(prediction); assert.deepStrictEqual(result, { media: { url: '', contentType: 'image/png', }, }); }); }); describe('defineModel()', () => { let fetchStub: sinon.SinonStub; let envStub: sinon.SinonStub; const modelName = 'imagen-test-model'; const defaultApiKey = 'default-api-key'; beforeEach(() => { fetchStub = sinon.stub(global, 'fetch'); // Stub process.env to control environment variables envStub = sinon.stub(process, 'env').value({}); }); afterEach(() => { sinon.restore(); }); function mockFetchResponse(body: any, status = 200) { const response = new Response(JSON.stringify(body), { status: status, statusText: status === 200 ? 'OK' : 'Error', headers: { 'Content-Type': 'application/json' }, }); fetchStub.resolves(Promise.resolve(response)); } function captureModelRunner( defineOptions: { name?: string; apiKey?: string | false; apiVersion?: string; baseUrl?: string; } = {} ): (request: GenerateRequest, options: any) => Promise<any> { const name = defineOptions.name || modelName; const apiVersion = defineOptions.apiVersion; const baseUrl = defineOptions.baseUrl; const apiKey = defineOptions.apiKey; const model = defineModel(name, { apiKey, apiVersion, baseUrl }); return model.run; } it('should define a model and call fetch successfully', async () => { const prompt = 'A cat'; const requestApiKey = 'request-api-key'; const request: GenerateRequest<typeof ImagenConfigSchema> = { messages: [{ role: 'user', content: [{ text: prompt }] }], config: { numberOfImages: 2, aspectRatio: '1:1', apiKey: requestApiKey, }, }; const mockPrediction: ImagenPrediction = { bytesBase64Encoded: 'abc', mimeType: 'image/jpeg', }; const mockResponse: ImagenPredictResponse = { predictions: [mockPrediction, mockPrediction], }; mockFetchResponse(mockResponse); const modelRunner = captureModelRunner({ apiKey: defaultApiKey }); const result = await modelRunner(request, {}); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; const expectedUrl = getGoogleAIUrl({ resourcePath: `models/${modelName}`, resourceMethod: 'predict', clientOptions: { apiVersion: undefined, baseUrl: undefined }, }); assert.strictEqual(fetchArgs[0], expectedUrl); const expectedHeaders = { 'Content-Type': 'application/json', 'x-goog-api-key': requestApiKey, // Effective key is from request 'x-goog-api-client': getGenkitClientHeader(), }; assert.deepStrictEqual(fetchArgs[1].headers, expectedHeaders); assert.strictEqual(fetchArgs[1].method, 'POST'); const expectedImagenPredictRequest: ImagenPredictRequest = { instances: [{ prompt: prompt }], parameters: toImagenParameters(request), }; assert.deepStrictEqual( JSON.parse(fetchArgs[1].body), expectedImagenPredictRequest ); const expectedContent = mockResponse.predictions.map(fromImagenPrediction); const expectedMessage: MessageData = { role: 'model', content: expectedContent, }; assert.deepStrictEqual(result.result.message, expectedMessage); assert.strictEqual(result.result.finishReason, 'stop'); assert.deepStrictEqual( result.result.usage, getBasicUsageStats(request.messages, expectedMessage) ); assert.deepStrictEqual(result.result.custom, mockResponse); }); it('should use default apiKey if no request apiKey provided', async () => { const prompt = 'A dog'; const request: GenerateRequest<typeof ImagenConfigSchema> = { messages: [{ role: 'user', content: [{ text: prompt }] }], config: { numberOfImages: 1, }, }; mockFetchResponse({ predictions: [{ bytesBase64Encoded: 'dog', mimeType: 'image/jpeg' }], }); const modelRunner = captureModelRunner({ apiKey: defaultApiKey }); await modelRunner(request, {}); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; assert.strictEqual(fetchArgs[1].headers['x-goog-api-key'], defaultApiKey); }); it('should handle custom apiVersion and baseUrl', async () => { mockFetchResponse({ predictions: [{ bytesBase64Encoded: 'def', mimeType: 'image/png' }], }); const apiVersion = 'v1test'; const baseUrl = 'https://test.example.com'; const modelRunner = captureModelRunner({ apiKey: defaultApiKey, apiVersion, baseUrl, }); await modelRunner( { messages: [{ role: 'user', content: [{ text: 'A dog' }] }], }, {} ); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; const expectedUrl = getGoogleAIUrl({ resourcePath: `models/${modelName}`, resourceMethod: 'predict', clientOptions: { apiVersion, baseUrl }, }); assert.strictEqual(fetchArgs[0], expectedUrl); }); it('should throw an error if model returns no predictions', async () => { mockFetchResponse({ predictions: [] }); const modelRunner = captureModelRunner({ apiKey: defaultApiKey }); await assert.rejects( modelRunner( { messages: [{ role: 'user', content: [{ text: 'A fish' }] }], }, {} ), /Model returned no predictions/ ); sinon.assert.calledOnce(fetchStub); }); it('should propagate network errors from fetch', async () => { const error = new Error('Network Error'); fetchStub.rejects(error); const modelRunner = captureModelRunner({ apiKey: defaultApiKey }); const expectedUrl = getGoogleAIUrl({ resourcePath: `models/${modelName}`, resourceMethod: 'predict', }); await assert.rejects( modelRunner( { messages: [{ role: 'user', content: [{ text: 'A bird' }] }], }, {} ), new RegExp(`Failed to fetch from ${expectedUrl}: Network Error`) ); }); it('should handle API error response', async () => { const errorBody = { error: { message: 'Invalid argument', code: 400 } }; mockFetchResponse(errorBody, 400); const modelRunner = captureModelRunner({ apiKey: defaultApiKey }); const expectedUrl = getGoogleAIUrl({ resourcePath: `models/${modelName}`, resourceMethod: 'predict', }); await assert.rejects( modelRunner( { messages: [{ role: 'user', content: [{ text: 'A plane' }] }], }, {} ), new RegExp( `Error fetching from ${expectedUrl}: \\[400 Error\\] Invalid argument` ) ); }); it('apiKey false at init, provided in request', async () => { const requestApiKey = 'request-api-key'; mockFetchResponse({ predictions: [{ bytesBase64Encoded: 'jkl', mimeType: 'image/png' }], }); const modelRunner = captureModelRunner({ apiKey: false }); await modelRunner( { messages: [{ role: 'user', content: [{ text: 'A train' }] }], config: { apiKey: requestApiKey }, }, {} ); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; assert.strictEqual(fetchArgs[1].headers['x-goog-api-key'], requestApiKey); }); it('apiKey false at init, missing in request - throws error', async () => { const modelRunner = captureModelRunner({ apiKey: false }); await assert.rejects( modelRunner( { messages: [{ role: 'user', content: [{ text: 'A car' }] }], config: {}, }, {} ), API_KEY_FALSE_ERROR ); sinon.assert.notCalled(fetchStub); }); it('defineImagenModel throws if key not found in env or args', async () => { // process.env is empty due to envStub in beforeEach assert.throws(() => { // Explicitly pass undefined for apiKey defineModel(modelName, undefined); }, MISSING_API_KEY_ERROR); }); it('should use key from env if no key passed to defineImagenModel', async () => { const envKey = 'env-api-key'; envStub.value({ GOOGLE_API_KEY: envKey }); mockFetchResponse({ predictions: [{ bytesBase64Encoded: 'mno', mimeType: 'image/png' }], }); const modelRunner = captureModelRunner({ apiKey: undefined }); // No apiKey passed in init await modelRunner( { messages: [{ role: 'user', content: [{ text: 'A bike' }] }], }, {} ); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; assert.strictEqual(fetchArgs[1].headers['x-goog-api-key'], envKey); }); }); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server