Skip to main content
Glama

Genkit MCP

Official
by firebase
lyria.ts4.5 kB
/** * Copyright 2025 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { ActionMetadata, modelActionMetadata, modelRef, ModelReference, z, } from 'genkit'; import { ModelAction, ModelInfo } from 'genkit/model'; import { model as pluginModel } from 'genkit/plugin'; import { lyriaPredict } from './client.js'; import { fromLyriaResponse, toLyriaPredictRequest } from './converters.js'; import { ClientOptions, Model, VertexPluginOptions } from './types.js'; import { checkModelName, extractVersion } from './utils.js'; export const LyriaConfigSchema = z .object({ negativePrompt: z .string() .optional() .describe( 'Optional. A description of what to exclude from the generated audio.' ), seed: z .number() .optional() .describe( 'Optional. A seed for deterministic generation. If provided, the model will attempt to produce the same audio given the same prompt and other parameters. Cannot be used with sample_count in the same request.' ), sampleCount: z .number() .optional() .describe( 'Optional. The number of audio samples to generate. Default is 1 if not specified and seed is not used. Cannot be used with seed in the same request.' ), }) .passthrough(); export type LyriaConfigSchemaType = typeof LyriaConfigSchema; export type LyriaConfig = z.infer<LyriaConfigSchemaType>; type ConfigSchemaType = LyriaConfigSchemaType; function commonRef( name: string, info?: ModelInfo, configSchema: ConfigSchemaType = LyriaConfigSchema ): ModelReference<ConfigSchemaType> { return modelRef({ name: `vertexai/${name}`, configSchema, info: info ?? { supports: { media: true, multiturn: false, tools: false, systemRole: false, output: ['media'], }, }, }); } const GENERIC_MODEL = commonRef('lyria'); const KNOWN_MODELS = { 'lyria-002': commonRef('lyria-002'), } as const; export type KnownModels = keyof typeof KNOWN_MODELS; // For autocorrect export type LyriaModelName = `lyria-${string}`; export function isLyriaModelName(value?: string): value is LyriaModelName { return !!value?.startsWith('lyria-'); } export function model( version: string, config: LyriaConfig = {} ): ModelReference<ConfigSchemaType> { const name = checkModelName(version); return modelRef({ name: `vertexai/${name}`, config, configSchema: LyriaConfigSchema, info: { ...GENERIC_MODEL.info }, }); } export function listActions(models: Model[]): ActionMetadata[] { return models .filter((m: Model) => isLyriaModelName(m.name)) .map((m: Model) => { const ref = model(m.name); return modelActionMetadata({ name: ref.name, info: ref.info, configSchema: ref.configSchema, }); }); } export function listKnownModels( clientOptions: ClientOptions, pluginOptions?: VertexPluginOptions ) { return Object.keys(KNOWN_MODELS).map((name: string) => defineModel(name, clientOptions, pluginOptions) ); } export function defineModel( name: string, clientOptions: ClientOptions, pluginOptions?: VertexPluginOptions ): ModelAction { const ref = model(name); return pluginModel( { name: ref.name, ...ref.info, configSchema: ref.configSchema, }, async (request, { abortSignal }) => { const clientOpt = { ...clientOptions, signal: abortSignal }; const lyriaPredictRequest = toLyriaPredictRequest(request); const response = await lyriaPredict( extractVersion(ref), lyriaPredictRequest, clientOpt ); if (!response.predictions || response.predictions.length == 0) { throw new Error( 'Model returned no predictions. Possibly due to content filters.' ); } return fromLyriaResponse(response, request); } ); } export const TEST_ONLY = { GENERIC_MODEL, KNOWN_MODELS, };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server