Skip to main content
Glama

Genkit MCP

Official
by firebase
veo.ts7.32 kB
/** * Copyright 2025 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { ActionMetadata, GenerateResponseData, Operation, modelActionMetadata, z, } from 'genkit'; import { BackgroundModelAction, modelRef, type GenerateRequest, type ModelInfo, type ModelReference, } from 'genkit/model'; import { backgroundModel as pluginBackgroundModel } from 'genkit/plugin'; import { veoCheckOperation, veoPredict } from './client.js'; import { ClientOptions, GoogleAIPluginOptions, Model, VeoOperation, VeoParameters, VeoPredictRequest, } from './types.js'; import { calculateApiKey, checkModelName, extractText, extractVeoImage, extractVersion, modelName, } from './utils.js'; /** * See https://ai.google.dev/gemini-api/docs/video */ export const VeoConfigSchema = z .object({ // NOTE: Documentation notes numberOfVideos parameter to pick the number of // output videos, but this setting does not seem to work negativePrompt: z.string().optional(), aspectRatio: z .enum(['9:16', '16:9']) .describe('Desired aspect ratio of the output video.') .optional(), personGeneration: z .enum(['dont_allow', 'allow_adult', 'allow_all']) .describe( 'Control if/how images of people will be generated by the model.' ) .optional(), durationSeconds: z .number() .step(1) .min(5) .max(8) .describe('Length of each output video in seconds, between 5 and 8.') .optional(), enhancePrompt: z .boolean() .describe('Enable or disable the prompt rewriter. Enabled by default.') .optional(), }) .passthrough(); export type VeoConfigSchemaType = typeof VeoConfigSchema; export type VeoConfig = z.infer<VeoConfigSchemaType>; // This contains all the Veo config schema types type ConfigSchemaType = VeoConfigSchemaType; function commonRef( name: string, info?: ModelInfo, configSchema: ConfigSchemaType = VeoConfigSchema ): ModelReference<ConfigSchemaType> { return modelRef({ name: `googleai/${name}`, configSchema, info: info ?? ({ supports: { media: true, multiturn: false, tools: false, systemRole: false, output: ['media'], longRunning: true, }, } as ModelInfo), // TODO(ifielker): Remove this cast if we fix longRunning }); } const GENERIC_MODEL = commonRef('veo'); const KNOWN_MODELS = { 'veo-3.0-generate-preview': commonRef('veo-3.0-generate-preview'), 'veo-3.0-fast-generate-preview': commonRef('veo-3.0-fast-generate-preview'), 'veo-2.0-generate-001': commonRef('veo-2.0-generate-001'), } as const; export type KnownModels = keyof typeof KNOWN_MODELS; // For autocomplete export type VeoModelName = `veo-${string}`; export function isVeoModelName(value?: string): value is VeoModelName { return !!value?.startsWith('veo-'); } export function model( version: string, config: VeoConfig = {} ): ModelReference<ConfigSchemaType> { const name = checkModelName(version); return modelRef({ name: `googleai/${name}`, config, configSchema: VeoConfigSchema, info: { ...GENERIC_MODEL.info }, }); } // Takes a full list of models, filters for current Veo models only // and returns a modelActionMetadata for each. export function listActions(models: Model[]): ActionMetadata[] { return ( models .filter( (m) => m.supportedGenerationMethods.includes('predictLongRunning') && isVeoModelName(modelName(m.name)) ) // Filter out deprecated .filter((m) => !m.description || !m.description.includes('deprecated')) .map((m) => { const ref = model(m.name); return modelActionMetadata({ name: ref.name, info: ref.info, configSchema: ref.configSchema, }); }) ); } export function listKnownModels(options?: GoogleAIPluginOptions) { return Object.keys(KNOWN_MODELS).map((name: string) => defineModel(name, options) ); } /** * Defines a new GoogleAI Veo model. */ export function defineModel( name: string, pluginOptions?: GoogleAIPluginOptions ): BackgroundModelAction<VeoConfigSchemaType> { const ref = model(name); const clientOptions: ClientOptions = { apiVersion: pluginOptions?.apiVersion, baseUrl: pluginOptions?.baseUrl, }; return pluginBackgroundModel({ name: ref.name, ...ref.info, configSchema: ref.configSchema, async start(request) { const apiKey = calculateApiKey(pluginOptions?.apiKey, undefined); const veoPredictRequest: VeoPredictRequest = { instances: [ { prompt: extractText(request), image: extractVeoImage(request), }, ], parameters: toVeoParameters(request), }; const response = await veoPredict( apiKey, extractVersion(ref), veoPredictRequest, clientOptions ); return fromVeoOperation(response); }, async check(operation) { const apiKey = calculateApiKey(pluginOptions?.apiKey, undefined); const response = await veoCheckOperation( apiKey, operation.id, clientOptions ); return fromVeoOperation(response); }, }); } function toVeoParameters( request: GenerateRequest<VeoConfigSchemaType> ): VeoParameters { const out = { ...request?.config, }; for (const k in out) { // undefined is handled by JSON.stringify // false is needed so we can set enhancePrompt to false if (out[k] === null) delete out[k]; } // This is not part of the request parameters sent to the endpoint // It's pulled out and used separately delete out.apiKey; // This was used to help us figure out which model. We no longer need // it here. delete out.version; return out; } function fromVeoOperation( apiOp: VeoOperation ): Operation<GenerateResponseData> { const res = { id: apiOp.name } as Operation<GenerateResponseData>; if (apiOp.done !== undefined) { res.done = apiOp.done; } if (apiOp.error) { res.error = { message: apiOp.error.message }; } if ( apiOp.response && apiOp.response.generateVideoResponse && apiOp.response.generateVideoResponse.generatedSamples ) { res.output = { finishReason: 'stop', raw: apiOp.response, message: { role: 'model', content: apiOp.response.generateVideoResponse.generatedSamples.map( (s) => { return { media: { url: s.video.uri, }, }; } ), }, }; } return res; } export const TEST_ONLY = { toVeoParameters, fromVeoOperation, GENERIC_MODEL, KNOWN_MODELS, };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server