Skip to main content
Glama

Genkit MCP

Official
by firebase
parser.ts6.8 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import type { Action } from '../types/action'; import type { EvalInput, EvalMetric, EvalResult } from '../types/eval'; import type { EvalFnResponse, EvalResponse } from '../types/evaluator'; import { EVALUATOR_METADATA_KEY_DEFINITION, EVALUATOR_METADATA_KEY_DISPLAY_NAME, countBy, groupBy, meanBy, } from '../utils/eval'; /** Maximum allowed unique strings / enums for generating summaries */ export const MAX_UNIQUE_STRING_DIST = 5; /** * Combines EvalInput with the generated scores to create a storable EvalResult. */ export function enrichResultsWithScoring( scores: Record<string, EvalResponse>, evalDataset: EvalInput[] ): EvalResult[] { const scoreMap: Record<string, EvalMetric[]> = {}; Object.keys(scores).forEach((evaluator) => { const evaluatorResponse = scores[evaluator]; evaluatorResponse.forEach((scoredSample: EvalFnResponse) => { if (!scoredSample.testCaseId) { throw new Error('testCaseId expected to be present'); } const score = Array.isArray(scoredSample.evaluation) ? scoredSample.evaluation : [scoredSample.evaluation]; const existingScores = scoreMap[scoredSample.testCaseId] ?? []; const newScores = existingScores.concat( score.map((s) => ({ evaluator, score: s.score, scoreId: s.id, status: s.status, rationale: s.details?.reasoning, error: s.error, traceId: scoredSample.traceId, spanId: scoredSample.spanId, })) ); scoreMap[scoredSample.testCaseId] = newScores; }); }); return evalDataset.map((evalResult) => { return { ...evalResult, metrics: scoreMap[evalResult.testCaseId] ?? [], }; }); } export function extractMetricsMetadata(evaluatorActions: Action[]) { const metadata: Record<string, any> = {}; for (const action of evaluatorActions) { metadata[action.name] = { displayName: (action.metadata!.evaluator as any)[ EVALUATOR_METADATA_KEY_DISPLAY_NAME ], definition: (action.metadata!.evaluator as any)[ EVALUATOR_METADATA_KEY_DEFINITION ], }; } return metadata; } export function extractMetricSummaries( /** key: evaluatorRef */ scores: Record<string, EvalResponse> ) { // key: evaluatorRef or evaluatorRef + scoreId (if available) const testCaseCountMap: Record<string, number> = {}; const entries = Object.entries(scores) .map(([evaluator, responseArray]) => { testCaseCountMap[evaluator] = responseArray.length; return { evaluator, score: responseArray.flatMap((response) => Array.isArray(response.evaluation) ? response.evaluation : [response.evaluation] ), }; }) .flatMap((entry) => { const groupedScores = groupBy(entry.score, 'id'); const groupedScoresKeys = Object.keys(groupedScores); if ( groupedScoresKeys.length === 1 && groupedScoresKeys[0] === 'undefined' ) { // No score-level granularity return entry.score.flatMap((score) => ({ evaluator: entry.evaluator, testCaseCount: testCaseCountMap[entry.evaluator] ?? 0, status: score.status, score: score.score, error: score.error, })); } else { return Object.entries(groupedScores).flatMap(([scoreId, scores]) => { if (scoreId === 'undefined') { return scores.map((score) => ({ evaluator: entry.evaluator, testCaseCount: testCaseCountMap[entry.evaluator] ?? 0, status: score.status, score: score.score, error: score.error, })); } else { // Duplicate tracking to simplify lookup. testCaseCountMap[entry.evaluator + '/' + scoreId] = testCaseCountMap[entry.evaluator] ?? 0; return scores.map((score) => ({ // Synthetic ID to separate different scores evaluator: entry.evaluator + '/' + scoreId, testCaseCount: testCaseCountMap[entry.evaluator] ?? 0, status: score.status, score: score.score, error: score.error, })); } }); } }); const grouped = groupBy(entries, 'evaluator'); const summaries = Object.entries(grouped).map(([evaluator, items]) => { const definedItems = items.filter( (item) => typeof item.score !== 'undefined' ); const scoreUndefinedCount = items.filter( (item) => typeof item.score === 'undefined' ).length; const errorCount = items.filter((item) => item.error !== undefined).length; const statusDistribution = countBy(items, 'status'); if (definedItems.length > 0) { // At least one score be registered for this const validItem = definedItems[0]; const scoreType = typeof validItem.score; if (scoreType === 'number') { return { evaluator, testCaseCount: validItem.testCaseCount, errorCount, scoreUndefinedCount, statusDistribution, averageScore: meanBy(definedItems, 'score'), }; } else if (scoreType === 'boolean') { return { evaluator, testCaseCount: validItem.testCaseCount, errorCount, scoreUndefinedCount, statusDistribution, scoreDistribution: countBy(definedItems, 'score'), }; } else if (scoreType === 'string') { // Treat as enum, but limit to 5 by heuristics const scoreDistribution = countBy(definedItems, 'score'); if (Object.keys(scoreDistribution).length <= MAX_UNIQUE_STRING_DIST) { return { evaluator, testCaseCount: validItem.testCaseCount, errorCount, scoreUndefinedCount, scoreDistribution, statusDistribution, }; } } } return { evaluator, testCaseCount: testCaseCountMap[evaluator] ?? 0, errorCount, scoreUndefinedCount, statusDistribution, }; }); return summaries; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server