/**
* Copyright 2024 The Fire Company
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import {
afterEach,
beforeEach,
describe,
expect,
it,
jest,
} from '@jest/globals';
import type {
GenerateRequest,
GenerateResponseData,
MessageData,
Part,
Role,
} from 'genkit';
import OpenAI, { APIError } from 'openai';
import type {
ChatCompletion,
ChatCompletionChunk,
ChatCompletionMessageToolCall,
ChatCompletionRole,
} from 'openai/resources/index.mjs';
import {
ModelRequestBuilder,
fromOpenAIChoice,
fromOpenAIChunkChoice,
fromOpenAIToolCall,
openAIModelRunner,
toOpenAIMessages,
toOpenAIRequestBody,
toOpenAIRole,
toOpenAITextAndMedia,
} from '../src/model';
import { FakeOpenAIServer } from './fake_openai_server';
jest.mock('genkit/model', () => {
const originalModule =
jest.requireActual<typeof import('genkit/model')>('genkit/model');
return {
...originalModule,
defineModel: jest.fn((_, runner) => {
return runner;
}),
};
});
describe('toOpenAIRole', () => {
const testCases: {
genkitRole: Role;
expectedOpenAiRole: ChatCompletionRole;
}[] = [
{
genkitRole: 'user',
expectedOpenAiRole: 'user',
},
{
genkitRole: 'model',
expectedOpenAiRole: 'assistant',
},
{
genkitRole: 'system',
expectedOpenAiRole: 'system',
},
{
genkitRole: 'tool',
expectedOpenAiRole: 'tool',
},
];
for (const test of testCases) {
it(`should map Genkit "${test.genkitRole}" role to OpenAI "${test.expectedOpenAiRole}" role`, () => {
const actualOutput = toOpenAIRole(test.genkitRole);
expect(actualOutput).toBe(test.expectedOpenAiRole);
});
}
it('should throw an error for unknown roles', () => {
expect(() => toOpenAIRole('unknown' as Role)).toThrowError(
"role unknown doesn't map to an OpenAI role."
);
});
});
describe('toOpenAiTextAndMedia', () => {
it('should transform text content correctly', () => {
const part: Part = { text: 'hi' };
const actualOutput = toOpenAITextAndMedia(part, 'low');
expect(actualOutput).toStrictEqual({ type: 'text', text: 'hi' });
});
it('should transform image media content correctly', () => {
const part: Part = {
media: {
contentType: 'image/jpeg',
url: 'https://example.com/image.jpg',
},
};
const actualOutput = toOpenAITextAndMedia(part, 'low');
expect(actualOutput).toStrictEqual({
type: 'image_url',
image_url: {
url: 'https://example.com/image.jpg',
detail: 'low',
},
});
});
it('should transform PDF file content correctly with base64 data', () => {
const part: Part = {
media: {
contentType: 'application/pdf',
url: 'data:application/pdf;base64,JVBERi0xLjQKJeLjz9MK',
},
};
const actualOutput = toOpenAITextAndMedia(part, 'low');
expect(actualOutput).toStrictEqual({
type: 'file',
file: {
filename: 'file.pdf',
file_data: 'data:application/pdf;base64,JVBERi0xLjQKJeLjz9MK',
},
});
});
it('should transform PDF file without explicit contentType from data URL', () => {
const part: Part = {
media: {
url: 'data:application/pdf;base64,JVBERi0xLjQKJeLjz9MK',
},
};
const actualOutput = toOpenAITextAndMedia(part, 'low');
expect(actualOutput).toStrictEqual({
type: 'file',
file: {
filename: 'file.pdf',
file_data: 'data:application/pdf;base64,JVBERi0xLjQKJeLjz9MK',
},
});
});
it('should transform image from data URL without explicit contentType', () => {
const part: Part = {
media: {
url: '',
},
};
const actualOutput = toOpenAITextAndMedia(part, 'high');
expect(actualOutput).toStrictEqual({
type: 'image_url',
image_url: {
url: '',
detail: 'high',
},
});
});
it('should throw error for file URLs (non-base64 PDFs)', () => {
const part: Part = {
media: {
contentType: 'application/pdf',
url: 'https://example.com/document.pdf',
},
};
expect(() => toOpenAITextAndMedia(part, 'low')).toThrowError(
'File URLs are not supported for chat completions'
);
});
it('should throw an error for unknown parts', () => {
const part: Part = { data: 'hi' };
expect(() => toOpenAITextAndMedia(part, 'low')).toThrowError(
`Unsupported genkit part fields encountered for current message role: {"data":"hi"}`
);
});
});
describe('toOpenAiMessages', () => {
const testCases = [
{
should: 'should transform tool request content correctly',
inputMessages: [
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_SVDpFV2l2fW88QRFtv85FWwM',
name: 'tellAFunnyJoke',
input: { topic: 'bob' },
},
},
],
},
],
expectedOutput: [
{
role: 'assistant',
tool_calls: [
{
id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"bob"}',
},
},
],
},
],
},
{
should: 'should transform tool response text content correctly',
inputMessages: [
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_SVDpFV2l2fW88QRFtv85FWwM',
name: 'tellAFunnyJoke',
output: 'Why did the bob cross the road?',
},
},
],
},
],
expectedOutput: [
{
role: 'tool',
tool_call_id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
content: 'Why did the bob cross the road?',
},
],
},
{
should: 'should transform tool response json content correctly',
inputMessages: [
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_SVDpFV2l2fW88QRFtv85FWwM',
name: 'tellAFunnyJoke',
output: { test: 'example' },
},
},
],
},
],
expectedOutput: [
{
role: 'tool',
tool_call_id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
content: JSON.stringify({ test: 'example' }),
},
],
},
{
should: 'should transform text content correctly',
inputMessages: [
{ role: 'user', content: [{ text: 'hi' }] },
{ role: 'model', content: [{ text: 'how can I help you?' }] },
{ role: 'user', content: [{ text: 'I am testing' }] },
],
expectedOutput: [
{ role: 'user', content: 'hi' },
{ role: 'assistant', content: 'how can I help you?' },
{ role: 'user', content: 'I am testing' },
],
},
{
should: 'should transform multi-modal (text + media) content correctly',
inputMessages: [
{
role: 'user',
content: [
{ text: 'describe the following image:' },
{
media: {
contentType: 'image/jpeg',
url: 'https://img.freepik.com/free-photo/abstract-autumn-beauty-multi-colored-leaf-vein-pattern-generated-by-ai_188544-9871.jpg?size=626&ext=jpg&ga=GA1.1.735520172.1710720000&semt=ais',
},
},
],
},
],
expectedOutput: [
{
role: 'user',
content: [
{ type: 'text', text: 'describe the following image:' },
{
type: 'image_url',
image_url: {
url: 'https://img.freepik.com/free-photo/abstract-autumn-beauty-multi-colored-leaf-vein-pattern-generated-by-ai_188544-9871.jpg?size=626&ext=jpg&ga=GA1.1.735520172.1710720000&semt=ais',
detail: 'auto',
},
},
],
},
],
},
{
should: 'should transform system messages correctly',
inputMessages: [
{ role: 'system', content: [{ text: 'system message' }] },
],
expectedOutput: [{ role: 'system', content: 'system message' }],
},
];
for (const test of testCases) {
it(test.should, () => {
const actualOutput = toOpenAIMessages(
test.inputMessages as MessageData[]
);
expect(actualOutput).toStrictEqual(test.expectedOutput);
});
}
});
describe('fromOpenAiToolCall', () => {
it('should transform tool call correctly', () => {
const toolCall: ChatCompletionMessageToolCall = {
id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"bob"}',
},
};
const actualOutput = fromOpenAIToolCall(toolCall, {
message: { tool_calls: [toolCall] },
finish_reason: 'tool_calls',
} as ChatCompletion.Choice);
expect(actualOutput).toStrictEqual({
toolRequest: {
ref: 'call_SVDpFV2l2fW88QRFtv85FWwM',
name: 'tellAFunnyJoke',
input: { topic: 'bob' },
},
});
});
it('should proxy null-ish arguments', () => {
const toolCall: ChatCompletionMessageToolCall = {
id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '',
},
};
const actualOutput = fromOpenAIToolCall(toolCall, {
message: { tool_calls: [toolCall] },
finish_reason: 'tool_calls',
} as ChatCompletion.Choice);
expect(actualOutput).toStrictEqual({
toolRequest: {
ref: 'call_SVDpFV2l2fW88QRFtv85FWwM',
name: 'tellAFunnyJoke',
input: '',
},
});
});
it('should throw an error if tool call is missing required fields', () => {
const toolCall: ChatCompletionMessageToolCall = {
id: 'call_SVDpFV2l2fW88QRFtv85FWwM',
type: 'function',
function: undefined as any,
};
expect(() =>
fromOpenAIToolCall(toolCall, {
message: { tool_calls: [toolCall] },
finish_reason: 'tool_calls',
} as ChatCompletion.Choice)
).toThrowError(
'Unexpected openAI chunk choice. tool_calls was provided but one or more tool_calls is missing.'
);
});
});
describe('fromOpenAiChoice', () => {
const testCases: {
should: string;
choice: ChatCompletion.Choice;
jsonMode?: boolean;
expectedOutput: GenerateResponseData;
}[] = [
{
should: 'should work with text',
choice: {
index: 0,
message: {
role: 'assistant',
content: 'Tell a joke about dogs.',
refusal: null,
},
finish_reason: 'whatever' as any,
logprobs: null,
},
expectedOutput: {
finishReason: 'other',
message: {
role: 'model',
content: [{ text: 'Tell a joke about dogs.' }],
},
},
},
{
should: 'should work with json',
choice: {
index: 0,
message: {
role: 'assistant',
content: JSON.stringify({ json: 'test' }),
refusal: null,
},
finish_reason: 'content_filter',
logprobs: null,
},
jsonMode: true,
expectedOutput: {
finishReason: 'blocked',
message: {
role: 'model',
content: [{ data: { json: 'test' } }],
},
},
},
{
should: 'should work with tools',
choice: {
index: 0,
message: {
role: 'assistant',
content: 'Tool call',
refusal: null,
tool_calls: [
{
id: 'ref123',
type: 'function',
function: {
name: 'exampleTool',
arguments: JSON.stringify({ param: 'value' }),
},
},
],
},
finish_reason: 'tool_calls',
logprobs: null,
},
expectedOutput: {
message: {
role: 'model',
content: [
{
toolRequest: {
name: 'exampleTool',
input: { param: 'value' },
ref: 'ref123',
},
},
],
},
finishReason: 'stop',
},
},
{
should: 'should work with reasoning_content',
choice: {
index: 0,
message: {
role: 'assistant',
content: null,
reasoning_content: 'Let me think about this step by step...',
refusal: null,
} as any,
finish_reason: 'stop',
logprobs: null,
},
expectedOutput: {
finishReason: 'stop',
message: {
role: 'model',
content: [{ reasoning: 'Let me think about this step by step...' }],
},
},
},
{
should: 'should work with both reasoning_content and content',
choice: {
index: 0,
message: {
role: 'assistant',
content: 'Final answer',
reasoning_content: 'Let me think...',
refusal: null,
} as any,
finish_reason: 'stop',
logprobs: null,
},
expectedOutput: {
finishReason: 'stop',
message: {
role: 'model',
content: [{ reasoning: 'Let me think...' }, { text: 'Final answer' }],
},
},
},
];
for (const test of testCases) {
it(test.should, () => {
const actualOutput = fromOpenAIChoice(test.choice, test.jsonMode);
expect(actualOutput).toStrictEqual(test.expectedOutput);
});
}
});
describe('fromOpenAiChunkChoice', () => {
const testCases: {
should: string;
chunkChoice: ChatCompletionChunk.Choice;
jsonMode?: boolean;
expectedOutput: GenerateResponseData;
}[] = [
{
should: 'should work with text',
chunkChoice: {
index: 0,
delta: {
role: 'assistant',
content: 'Tell a joke about dogs.',
},
finish_reason: 'whatever' as any,
},
expectedOutput: {
finishReason: 'other',
message: {
role: 'model',
content: [{ text: 'Tell a joke about dogs.' }],
},
},
},
{
should: 'should work with json',
chunkChoice: {
index: 0,
delta: {
role: 'assistant',
content: JSON.stringify({ json: 'test' }),
},
finish_reason: null,
logprobs: null,
},
jsonMode: true,
expectedOutput: {
finishReason: 'unknown',
message: {
role: 'model',
content: [{ data: { json: 'test' } }],
},
},
},
{
should: 'should work with tools',
chunkChoice: {
index: 0,
delta: {
role: 'assistant',
content: 'Tool call',
tool_calls: [
{
index: 0,
id: 'ref123',
function: {
name: 'exampleTool',
arguments: JSON.stringify({ param: 'value' }),
},
},
],
},
finish_reason: 'tool_calls',
},
expectedOutput: {
message: {
role: 'model',
content: [
{
toolRequest: {
name: 'exampleTool',
input: { param: 'value' },
ref: 'ref123',
},
},
],
},
finishReason: 'stop',
},
},
{
should: 'should work with reasoning_content',
chunkChoice: {
index: 0,
delta: {
role: 'assistant',
reasoning_content: 'Let me think about this step by step...',
} as any,
finish_reason: null,
},
expectedOutput: {
finishReason: 'unknown',
message: {
role: 'model',
content: [{ reasoning: 'Let me think about this step by step...' }],
},
},
},
{
should: 'should work with both reasoning_content and content',
chunkChoice: {
index: 0,
delta: {
role: 'assistant',
reasoning_content: 'Let me think...',
content: 'Final answer',
} as any,
finish_reason: 'stop',
},
expectedOutput: {
finishReason: 'stop',
message: {
role: 'model',
content: [{ reasoning: 'Let me think...' }, { text: 'Final answer' }],
},
},
},
];
for (const test of testCases) {
it(test.should, () => {
const actualOutput = fromOpenAIChunkChoice(
test.chunkChoice,
test.jsonMode
);
expect(actualOutput).toStrictEqual(test.expectedOutput);
});
}
});
describe('toOpenAiRequestBody', () => {
const testCases = [
{
should: '(gpt-3.5-turbo) handles request with text messages',
modelName: 'gpt-3.5-turbo',
genkitRequest: {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
],
tools: [],
output: { format: 'text' },
config: {
topP: 1,
frequency_penalty: 0.7,
logit_bias: {
science: 12,
technology: 8,
politics: -5,
sports: 3,
},
logprobs: true,
presence_penalty: -0.3,
seed: 42,
top_logprobs: 10,
user: 'exampleUser123',
},
},
expectedOutput: {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
],
model: 'gpt-3.5-turbo',
response_format: { type: 'text' },
top_p: 1,
frequency_penalty: 0.7,
logit_bias: {
science: 12,
technology: 8,
politics: -5,
sports: 3,
},
logprobs: true,
presence_penalty: -0.3,
seed: 42,
top_logprobs: 10,
user: 'exampleUser123',
},
},
{
should: '(gpt-3.5-turbo) handles request with text messages and tools',
modelName: 'gpt-3.5-turbo',
genkitRequest: {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'text' },
},
expectedOutput: {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-3.5-turbo',
response_format: {
type: 'text',
},
},
},
{
should: '(gpt-3.5-turbo) sets response_format if output.format=json',
modelName: 'gpt-3.5-turbo',
genkitRequest: {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'json' },
},
expectedOutput: {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-3.5-turbo',
response_format: { type: 'json_object' },
},
},
{
should: '(gpt-4-turbo) sets response_format if output.format=json',
modelName: 'gpt-4-turbo',
genkitRequest: {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'json' },
},
expectedOutput: {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-4-turbo',
response_format: { type: 'json_object' },
},
},
{
should: '(gpt-4o) sets response_format if output.format=json',
modelName: 'gpt-4o',
genkitRequest: {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'json' },
},
expectedOutput: {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-4o',
response_format: { type: 'json_object' },
},
},
];
for (const test of testCases) {
it(test.should, () => {
const actualOutput = toOpenAIRequestBody(
test.modelName,
test.genkitRequest as GenerateRequest
);
expect(actualOutput).toStrictEqual(test.expectedOutput);
});
}
it('(gpt4) does NOT set response_format in openai request body', () => {
// In either case - output.format='json' or output.format='text' - do NOT set response_format in the OpenAI request body explicitly.
const modelName = 'gpt-4';
const genkitRequestTextFormat = {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'text' },
};
const genkitRequestJsonFormat = {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'json' },
};
const expectedOutput = {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-4',
};
const actualOutput1 = toOpenAIRequestBody(
modelName,
genkitRequestTextFormat as GenerateRequest
);
const actualOutput2 = toOpenAIRequestBody(
modelName,
genkitRequestJsonFormat as GenerateRequest
);
expect(actualOutput1).toStrictEqual({
...expectedOutput,
response_format: {
type: 'text',
},
});
expect(actualOutput2).toStrictEqual({
...expectedOutput,
response_format: {
type: 'json_object',
},
});
});
it('(gpt4-vision) sets response_format in openai request body', () => {
// In either case - output.format='json' or output.format='text' - do NOT set response_format in the OpenAI request body explicitly.
const modelName = 'gpt-4-vision';
const genkitRequestTextFormat = {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'text' },
};
const genkitRequestJsonFormat = {
messages: [
{ role: 'user', content: [{ text: 'Tell a joke about dogs.' }] },
{
role: 'model',
content: [
{
toolRequest: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
input: { topic: 'dogs' },
},
},
],
},
{
role: 'tool',
content: [
{
toolResponse: {
ref: 'call_yTnDw3xY3KH3pkvDvccCizn1',
name: 'tellAFunnyJoke',
output: 'Why did the dogs cross the road?',
},
},
],
},
],
tools: [
{
name: 'tellAFunnyJoke',
description:
'Tells jokes about an input topic. Use this tool whenever user asks you to tell a joke.',
inputSchema: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
outputSchema: {
type: 'string',
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
],
output: { format: 'json' },
};
const expectedOutput = {
messages: [
{
role: 'user',
content: 'Tell a joke about dogs.',
},
{
role: 'assistant',
tool_calls: [
{
id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
type: 'function',
function: {
name: 'tellAFunnyJoke',
arguments: '{"topic":"dogs"}',
},
},
],
},
{
role: 'tool',
tool_call_id: 'call_yTnDw3xY3KH3pkvDvccCizn1',
content: 'Why did the dogs cross the road?',
},
],
tools: [
{
type: 'function',
function: {
name: 'tellAFunnyJoke',
parameters: {
type: 'object',
properties: { topic: { type: 'string' } },
required: ['topic'],
additionalProperties: false,
$schema: 'http://json-schema.org/draft-07/schema#',
},
},
},
],
model: 'gpt-4-vision',
};
const actualOutput1 = toOpenAIRequestBody(
modelName,
genkitRequestTextFormat as GenerateRequest
);
const actualOutput2 = toOpenAIRequestBody(
modelName,
genkitRequestJsonFormat as GenerateRequest
);
expect(actualOutput1).toStrictEqual({
...expectedOutput,
response_format: {
type: 'text',
},
});
expect(actualOutput2).toStrictEqual({
...expectedOutput,
response_format: {
type: 'json_object',
},
});
});
it('sets json_schema response_format when an output schema is provided', () => {
const schema = {
type: 'object',
properties: { foo: { type: 'string' } },
required: ['foo'],
additionalProperties: false,
};
const request = {
messages: [{ role: 'user', content: [{ text: 'hello' }] }],
output: { format: 'json', schema },
} as unknown as GenerateRequest;
const actualOutput = toOpenAIRequestBody('gpt-4o', request) as unknown as {
response_format?: {
type: string;
json_schema?: { name: string; schema: unknown };
};
};
expect(actualOutput.response_format).toStrictEqual({
type: 'json_schema',
json_schema: {
name: 'output',
schema,
},
});
});
});
describe('openAIModelRunner', () => {
it('should correctly run non-streaming requests', async () => {
const openaiClient = {
chat: {
completions: {
create: jest.fn(async () => ({
choices: [{ message: { content: 'response' } }],
})),
},
},
};
const runner = openAIModelRunner(
'gpt-4o',
openaiClient as unknown as OpenAI
);
await runner({ messages: [] });
expect(openaiClient.chat.completions.create).toHaveBeenCalledWith(
{
model: 'gpt-4o',
},
{ signal: undefined }
);
});
it('should correctly run streaming requests', async () => {
const openaiClient = {
beta: {
chat: {
completions: {
stream: jest.fn(
() =>
// Simulate OpenAI SDK request streaming
new (class {
isFirstRequest = true;
[Symbol.asyncIterator]() {
return {
next: async () => {
const returnValue = this.isFirstRequest
? {
value: {
choices: [{ delta: { content: 'response' } }],
},
done: false,
}
: { done: true };
this.isFirstRequest = false;
return returnValue;
},
};
}
async finalChatCompletion() {
return { choices: [{ message: { content: 'response' } }] };
}
})()
),
},
},
},
};
const sendChunk = jest.fn();
const abortSignal = jest.fn();
const runner = openAIModelRunner(
'gpt-4o',
openaiClient as unknown as OpenAI
);
await runner(
{ messages: [] },
{
sendChunk,
streamingRequested: true,
abortSignal: abortSignal as unknown as AbortSignal,
}
);
expect(openaiClient.beta.chat.completions.stream).toHaveBeenCalledWith(
{
model: 'gpt-4o',
stream: true,
stream_options: {
include_usage: true,
},
},
{ signal: abortSignal }
);
});
it('should run with requestBuilder', async () => {
const openaiClient = {
chat: {
completions: {
create: jest.fn(async () => ({
choices: [{ message: { content: 'response' } }],
})),
},
},
};
const requestBuilder: ModelRequestBuilder = (req, params) => {
(params as any).foo = 'bar';
};
const runner = openAIModelRunner(
'gpt-4o',
openaiClient as unknown as OpenAI,
requestBuilder
);
await runner({ messages: [], config: { temperature: 0.1 } });
expect(openaiClient.chat.completions.create).toHaveBeenCalledWith(
{
model: 'gpt-4o',
foo: 'bar',
temperature: 0.1,
},
{ signal: undefined }
);
});
describe('request scoping with fake server', () => {
let server: FakeOpenAIServer;
beforeEach(async () => {
server = new FakeOpenAIServer('scoped-key');
await server.start();
});
afterEach(() => {
server.stop();
});
it('should use request scoped client when apiKey is provided', async () => {
server.setNextResponse({
body: {
choices: [
{
message: { role: 'assistant', content: 'scoped response' },
finish_reason: 'stop',
},
],
},
});
const defaultClient = new OpenAI({ apiKey: 'default-key' });
const runner = openAIModelRunner('gpt-4o', defaultClient, undefined, {
name: 'openai',
baseURL: server.baseUrl,
});
const result = await runner({
messages: [{ role: 'user', content: [{ text: 'hi' }] }],
config: { apiKey: 'scoped-key' },
});
expect(result.message?.content[0].text).toBe('scoped response');
// Verify server received correct key
expect(server.requests.length).toBe(1);
expect(server.requests[0].headers['authorization']).toBe(
'Bearer scoped-key'
);
});
it('should handle streaming response with scoped client', async () => {
server.setNextResponse({
stream: true,
chunks: [
{
id: '1',
choices: [
{
index: 0,
delta: { role: 'assistant', content: 'chunk1' },
finish_reason: null,
},
],
},
{
id: '2',
choices: [
{ index: 0, delta: { content: 'chunk2' }, finish_reason: null },
],
},
{
id: '3',
choices: [{ index: 0, delta: {}, finish_reason: 'stop' }],
},
],
});
const defaultClient = new OpenAI({ apiKey: 'default-key' });
const runner = openAIModelRunner('gpt-4o', defaultClient, undefined, {
name: 'openai',
baseURL: server.baseUrl,
});
let streamedContent = '';
const result = await runner(
{
messages: [{ role: 'user', content: [{ text: 'hi' }] }],
config: { apiKey: 'scoped-key' },
},
{
streamingRequested: true,
sendChunk: (chunk) => {
if (chunk.content.length > 0) {
streamedContent += chunk.content[0].text;
}
},
}
);
expect(streamedContent).toBe('chunk1chunk2');
expect(result.message?.content[0].text).toBe('chunk1chunk2');
});
it('should fail when invalid apiKey is provided in request', async () => {
const defaultClient = new OpenAI({ apiKey: 'default-key' });
const runner = openAIModelRunner('gpt-4o', defaultClient, undefined, {
name: 'openai',
baseURL: server.baseUrl,
});
await expect(
runner({
messages: [{ role: 'user', content: [{ text: 'hi' }] }],
config: { apiKey: 'wrong-key' },
})
).rejects.toThrow(
expect.objectContaining({
status: 'PERMISSION_DENIED',
message: expect.stringContaining('Incorrect API key provided'),
})
);
});
it('should fail when invalid apiKey is provided in plugin options', async () => {
const defaultClient = new OpenAI({ apiKey: 'default-key' });
const runner = openAIModelRunner('gpt-4o', defaultClient, undefined, {
name: 'openai',
baseURL: server.baseUrl,
});
await expect(
runner({
messages: [{ role: 'user', content: [{ text: 'hi' }] }],
})
).rejects.toThrow(
expect.objectContaining({
status: 'PERMISSION_DENIED',
message: expect.stringContaining('Incorrect API key provided'),
})
);
});
});
describe('error handling', () => {
const testCases = [
{
name: '429',
error: new APIError(
429,
{ error: { message: 'Rate limit exceeded' } },
'',
{}
),
expectedStatus: 'RESOURCE_EXHAUSTED',
},
{
name: '400',
error: new APIError(
400,
{ error: { message: 'Invalid request' } },
'',
{}
),
expectedStatus: 'INVALID_ARGUMENT',
},
{
name: '500',
error: new APIError(
500,
{ error: { message: 'Internal server error' } },
'',
{}
),
expectedStatus: 'INTERNAL',
},
{
name: '503',
error: new APIError(
503,
{ error: { message: 'Service unavailable' } },
'',
{}
),
expectedStatus: 'UNAVAILABLE',
},
];
for (const tc of testCases) {
it(`should convert ${tc.name} error to GenkitError`, async () => {
const openaiClient = {
chat: {
completions: {
create: jest.fn(async () => {
throw tc.error;
}),
},
},
};
const runner = openAIModelRunner(
'gpt-4o',
openaiClient as unknown as OpenAI
);
await expect(runner({ messages: [] })).rejects.toThrow(
expect.objectContaining({
status: tc.expectedStatus,
})
);
});
}
it('should re-throw non-APIError', async () => {
const error = new Error('Some other error');
const openaiClient = {
chat: {
completions: {
create: jest.fn(async () => {
throw error;
}),
},
},
};
const runner = openAIModelRunner(
'gpt-4o',
openaiClient as unknown as OpenAI
);
await expect(runner({ messages: [] })).rejects.toThrow(
'Some other error'
);
});
});
});