# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
"""Hello Google GenAI sample.
Key features demonstrated in this sample:
| Feature Description | Example Function / Code Snippet |
|----------------------------------------------------------|----------------------------------------|
| Plugin Initialization | `ai = Genkit(plugins=[GoogleAI()])` |
| Default Model Configuration | `ai = Genkit(model=...)` |
| Defining Flows | `@ai.flow()` decorator (multiple uses) |
| Defining Tools | `@ai.tool()` decorator (multiple uses) |
| Pydantic for Tool Input Schema | `GablorkenInput` |
| Simple Generation (Prompt String) | `say_hi` |
| Generation with Messages (`Message`, `Role`, `TextPart`) | `simple_generate_with_tools_flow` |
| Generation with Tools | `simple_generate_with_tools_flow` |
| Tool Response Handling | `simple_generate_with_interrupts` |
| Tool Interruption (`ctx.interrupt`) | `gablorken_tool2` |
| Embedding (`ai.embed`, `Document`) | `embed_docs` |
| Generation Configuration (`temperature`, etc.) | `say_hi_with_configured_temperature` |
| Streaming Generation (`ai.generate_stream`) | `say_hi_stream` |
| Streaming Chunk Handling (`ctx.send_chunk`) | `say_hi_stream`, `generate_character` |
| Structured Output (Schema) | `generate_character` |
| Pydantic for Structured Output Schema | `RpgCharacter` |
| Unconstrained Structured Output | `generate_character_unconstrained` |
| Multi-modal Output Configuration | `generate_images` |
| GCP Telemetry (Traces and Metrics) | `add_gcp_telemetry()` |
| Thinking Mode (CoT) | `thinking_level_pro`, `thinking_level_flash` |
| Search Grounding | `search_grounding` |
| URL Context | `url_context` |
| Multimodal Generation (Video input) | `youtube_videos` |
"""
import argparse
import asyncio
import os
import sys
if sys.version_info < (3, 11):
from strenum import StrEnum
else:
from enum import StrEnum
from typing import Annotated, cast
import structlog
from pydantic import BaseModel, Field
from genkit.ai import Genkit, ToolRunContext, tool_response
from genkit.blocks.model import GenerateResponseWrapper
from genkit.core.action import ActionRunContext
from genkit.plugins.evaluators import GenkitMetricType, MetricConfig, define_genkit_evaluators
from genkit.plugins.google_cloud import add_gcp_telemetry
from genkit.plugins.google_genai import (
EmbeddingTaskType,
GoogleAI,
)
from genkit.types import (
Embedding,
GenerationCommonConfig,
Media,
MediaPart,
Message,
Part,
Role,
TextPart,
)
logger = structlog.get_logger(__name__)
if 'GEMINI_API_KEY' not in os.environ:
os.environ['GEMINI_API_KEY'] = input('Please enter your GEMINI_API_KEY: ')
ai = Genkit(
plugins=[GoogleAI()],
model='googleai/gemini-3-flash-preview',
)
define_genkit_evaluators(
ai,
[
MetricConfig(metric_type=GenkitMetricType.REGEX),
MetricConfig(metric_type=GenkitMetricType.DEEP_EQUAL),
MetricConfig(metric_type=GenkitMetricType.JSONATA),
],
)
class CurrencyExchangeInput(BaseModel):
"""Currency exchange flow input schema."""
amount: float = Field(description='Amount to convert', default=100)
from_curr: str = Field(description='Source currency code', default='USD')
to_curr: str = Field(description='Target currency code', default='EUR')
class CurrencyInput(BaseModel):
"""Currency conversion input schema."""
amount: float = Field(description='Amount to convert', default=100)
from_currency: str = Field(description='Source currency code (e.g., USD)', default='USD')
to_currency: str = Field(description='Target currency code (e.g., EUR)', default='EUR')
class GablorkenInput(BaseModel):
"""The Pydantic model for tools."""
value: int = Field(description='value to calculate gablorken for')
class Skills(BaseModel):
"""Skills for an RPG character."""
strength: int = Field(description='strength (0-100)')
charisma: int = Field(description='charisma (0-100)')
endurance: int = Field(description='endurance (0-100)')
class RpgCharacter(BaseModel):
"""An RPG character."""
name: str = Field(description='name of the character')
back_story: str = Field(description='back story', alias='backStory')
abilities: list[str] = Field(description='list of abilities (3-4)')
skills: Skills
class ThinkingLevel(StrEnum):
"""Thinking level enum."""
LOW = 'LOW'
HIGH = 'HIGH'
class ThinkingLevelFlash(StrEnum):
"""Thinking level flash enum."""
MINIMAL = 'MINIMAL'
LOW = 'LOW'
MEDIUM = 'MEDIUM'
HIGH = 'HIGH'
class WeatherInput(BaseModel):
"""Input for getting weather."""
location: str = Field(description='The city and state, e.g. San Francisco, CA')
@ai.tool(name='celsiusToFahrenheit')
def celsius_to_fahrenheit(celsius: float) -> float:
"""Converts Celsius to Fahrenheit."""
return (celsius * 9) / 5 + 32
@ai.tool()
def convert_currency(input: CurrencyInput) -> str:
"""Convert currency amount.
Args:
input: Currency conversion parameters.
Returns:
Converted amount.
"""
# Mock conversion rates
rates = {
('USD', 'EUR'): 0.85,
('EUR', 'USD'): 1.18,
('USD', 'GBP'): 0.73,
('GBP', 'USD'): 1.37,
}
rate = rates.get((input.from_currency, input.to_currency), 1.0)
converted = input.amount * rate
return f'{input.amount} {input.from_currency} = {converted:.2f} {input.to_currency}'
@ai.flow()
async def currency_exchange(input: CurrencyExchangeInput) -> str:
"""Convert currency using tools.
Args:
input: Currency exchange parameters.
Returns:
Conversion result.
"""
response = await ai.generate(
prompt=f'Convert {input.amount} {input.from_curr} to {input.to_curr}',
tools=['convert_currency'],
)
return response.text
@ai.flow()
async def demo_dynamic_tools(
input_val: Annotated[str, Field(default='Dynamic tools demo')] = 'Dynamic tools demo',
) -> dict:
"""Demonstrates advanced Genkit features: ai.run() and ai.dynamic_tool().
This flow shows how to:
1. Use `ai.run()` to create sub-spans (steps) within a flow trace.
2. Use `ai.dynamic_tool()` to create tools on-the-fly without registration.
To test this in the Dev UI:
1. Select 'demo_dynamic_tools' from the flows list.
2. Run it with the default input or provide a custom string.
3. Click 'View trace' to see the 'process_data_step' sub-span and tool execution.
"""
# ai.run() allows you to wrap any function in a trace span, which is visible
# in the Dev UI. It supports an optional input argument as the second parameter.
def process_data(data: str) -> str:
return f'processed: {data}'
run_result = await ai.run('process_data_step', input_val, process_data)
# ai.dynamic_tool() creates a tool that isn't globally registered but can be
# used immediately or passed to generate() calls.
def multiplier_fn(x: int) -> int:
return x * 10
dynamic_multiplier = ai.dynamic_tool('dynamic_multiplier', multiplier_fn, description='Multiplies by 10')
tool_res = await dynamic_multiplier.arun(5)
return {
'step_result': run_result,
'dynamic_tool_result': tool_res.response,
'tool_metadata': dynamic_multiplier.metadata,
}
@ai.flow()
async def describe_image(
image_url: Annotated[
str, Field(default='https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png')
] = 'https://upload.wikimedia.org/wikipedia/commons/4/47/PNG_transparency_demonstration_1.png',
) -> str:
"""Describe an image."""
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt=[
Part(root=TextPart(text='Describe this image')),
Part(root=MediaPart(media=Media(url=image_url, content_type='image/png'))),
],
config={'api_version': 'v1alpha'},
)
return response.text
@ai.flow()
async def embed_docs(
docs: list[str] | None = None,
) -> list[Embedding]:
"""Generate an embedding for the words in a list.
Args:
docs: list of texts (string)
Returns:
The generated embedding.
"""
if docs is None:
docs = ['Hello world', 'Genkit is great', 'Embeddings are fun']
options = {'task_type': EmbeddingTaskType.CLUSTERING}
return await ai.embed_many(
embedder='googleai/text-embedding-004',
content=docs,
options=options,
)
@ai.flow()
async def file_search() -> str:
"""File Search."""
# TODO: add file search store
store_name = 'fileSearchStores/sample-store'
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt="What is the character's name in the story?",
config={
'file_search': {
'file_search_store_names': [store_name],
'metadata_filter': 'author=foo',
},
'api_version': 'v1alpha',
},
)
return response.text
@ai.tool(name='gablorkenTool')
def gablorken_tool(input_: GablorkenInput) -> dict[str, int]:
"""Calculate a gablorken.
Returns:
The calculated gablorken.
"""
return {'result': input_.value * 3 - 5}
@ai.tool(name='gablorkenTool2')
def gablorken_tool2(input_: GablorkenInput, ctx: ToolRunContext) -> None:
"""The user-defined tool function.
Args:
input_: the input to the tool
ctx: the tool run context
Returns:
The calculated gablorken.
"""
ctx.interrupt()
@ai.flow()
async def generate_character(
name: Annotated[str, Field(default='Bartholomew')] = 'Bartholomew',
ctx: ActionRunContext = None, # type: ignore[assignment]
) -> RpgCharacter:
"""Generate an RPG character.
Args:
name: the name of the character
ctx: the context of the tool
Returns:
The generated RPG character.
"""
if ctx.is_streaming:
stream, result = ai.generate_stream(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
)
async for data in stream:
ctx.send_chunk(data.output)
return cast(RpgCharacter, (await result).output)
else:
result = await ai.generate(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
)
return cast(RpgCharacter, result.output)
@ai.flow()
async def generate_character_unconstrained(
name: Annotated[str, Field(default='Bartholomew')] = 'Bartholomew',
ctx: ActionRunContext = None, # type: ignore[assignment]
) -> RpgCharacter:
"""Generate an unconstrained RPG character.
Args:
name: the name of the character
ctx: the context of the tool
Returns:
The generated RPG character.
"""
result = await ai.generate(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
output_constrained=False,
output_instructions=True,
)
return cast(RpgCharacter, result.output)
@ai.tool(name='getWeather')
def get_weather(input_: WeatherInput) -> dict:
"""Used to get current weather for a location."""
return {
'location': input_.location,
'temperature_celcius': 21.5,
'conditions': 'cloudy',
}
@ai.flow()
async def say_hi(name: Annotated[str, Field(default='Alice')] = 'Alice') -> str:
"""Generate a greeting for the given name.
Args:
name: the name to send to test function
Returns:
The generated response with a function.
"""
resp = await ai.generate(
prompt=f'hi {name}',
)
await logger.ainfo(
'generation_response',
has_usage=hasattr(resp, 'usage'),
usage_dict=resp.usage.model_dump() if hasattr(resp, 'usage') and resp.usage else None,
text_length=len(resp.text),
)
return resp.text
@ai.flow()
async def say_hi_stream(
name: Annotated[str, Field(default='Alice')] = 'Alice',
ctx: ActionRunContext = None, # type: ignore[assignment]
) -> str:
"""Generate a greeting for the given name.
Args:
name: the name to send to test function
ctx: the context of the tool
Returns:
The generated response with a function.
"""
stream, _ = ai.generate_stream(prompt=f'hi {name}')
result: str = ''
async for data in stream:
ctx.send_chunk(data.text)
result += data.text
return result
@ai.flow()
async def say_hi_with_configured_temperature(
data: Annotated[str, Field(default='Alice')] = 'Alice',
) -> GenerateResponseWrapper:
"""Generate a greeting for the given name.
Args:
data: the name to send to test function
Returns:
The generated response with a function.
"""
return await ai.generate(
messages=[Message(role=Role.USER, content=[Part(root=TextPart(text=f'hi {data}'))])],
config=GenerationCommonConfig(temperature=0.1),
)
@ai.flow()
async def search_grounding() -> str:
"""Search grounding."""
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt='Who is Albert Einstein?',
config={'tools': [{'googleSearch': {}}], 'api_version': 'v1alpha'},
)
return response.text
@ai.flow()
async def simple_generate_with_interrupts(value: Annotated[int, Field(default=42)] = 42) -> str:
"""Generate a greeting for the given name.
Args:
value: the integer to send to test function
Returns:
The generated response with a function.
"""
response1 = await ai.generate(
messages=[
Message(
role=Role.USER,
content=[Part(root=TextPart(text=f'what is a gablorken of {value}'))],
),
],
tools=['gablorkenTool2'],
)
await logger.ainfo(f'len(response.tool_requests)={len(response1.tool_requests)}')
if len(response1.interrupts) == 0:
return response1.text
tr = tool_response(response1.interrupts[0], {'output': 178})
response = await ai.generate(
messages=response1.messages,
tool_responses=[tr],
tools=['gablorkenTool'],
)
return response.text
@ai.flow()
async def simple_generate_with_tools_flow(
value: Annotated[int, Field(default=42)] = 42,
ctx: ActionRunContext = None, # type: ignore[assignment]
) -> str:
"""Generate a greeting for the given name.
Args:
value: the integer to send to test function
ctx: the flow context
Returns:
The generated response with a function.
"""
response = await ai.generate(
prompt=f'what is a gablorken of {value}',
tools=['gablorkenTool'],
on_chunk=ctx.send_chunk,
)
return response.text
@ai.flow()
async def thinking_level_flash(level: ThinkingLevelFlash) -> str:
"""Gemini 3.0 thinkingLevel config (Flash)."""
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt=(
'Alice, Bob, and Carol each live in a different house on the '
'same street: red, green, and blue. The person who lives in the red house '
'owns a cat. Bob does not live in the green house. Carol owns a dog. The '
'green house is to the left of the red house. Alice does not own a cat. '
'The person in the blue house owns a fish. '
'Who lives in each house, and what pet do they own? Provide your '
'step-by-step reasoning.'
),
config={
'thinking_config': {
'include_thoughts': True,
}
},
)
return response.text
@ai.flow()
async def thinking_level_pro(level: ThinkingLevel) -> str:
"""Gemini 3.0 thinkingLevel config (Pro)."""
response = await ai.generate(
model='googleai/gemini-3-pro-preview',
prompt=(
'Alice, Bob, and Carol each live in a different house on the '
'same street: red, green, and blue. The person who lives in the red house '
'owns a cat. Bob does not live in the green house. Carol owns a dog. The '
'green house is to the left of the red house. Alice does not own a cat. '
'The person in the blue house owns a fish. '
'Who lives in each house, and what pet do they own? Provide your '
'step-by-step reasoning.'
),
config={
'thinking_config': {
'include_thoughts': True,
}
},
)
return response.text
@ai.flow()
async def tool_calling(location: Annotated[str, Field(default='Paris, France')] = 'Paris, France') -> str:
"""Tool calling with Gemini."""
response = await ai.generate(
model='googleai/gemini-2.5-flash',
tools=['getWeather', 'celsiusToFahrenheit'],
prompt=f"What's the weather in {location}? Convert the temperature to Fahrenheit.",
config=GenerationCommonConfig(temperature=1),
)
return response.text
@ai.flow()
async def url_context() -> str:
"""Url context."""
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt='Compare the ingredients and cooking times from the recipes at https://www.foodnetwork.com/recipes/ina-garten/'
'perfect-roast-chicken-recipe-1940592 and https://www.allrecipes.com/recipe/70679/'
'simple-whole-roasted-chicken/',
config={'url_context': {}, 'api_version': 'v1alpha'},
)
return response.text
@ai.flow()
async def youtube_videos() -> str:
"""YouTube videos."""
response = await ai.generate(
model='googleai/gemini-3-flash-preview',
prompt=[
Part(root=TextPart(text='transcribe this video')),
Part(
root=MediaPart(media=Media(url='https://www.youtube.com/watch?v=3p1P5grjXIQ', content_type='video/mp4'))
),
],
config={'api_version': 'v1alpha'},
)
return response.text
async def main() -> None:
"""Main function - keep alive for Dev UI."""
await logger.ainfo('Genkit server running. Press Ctrl+C to stop.')
# Keep the process alive for Dev UI
await asyncio.Event().wait()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Google GenAI Hello Sample')
parser.add_argument(
'--enable-gcp-telemetry',
action='store_true',
help='Enable Google Cloud Platform telemetry',
)
args = parser.parse_args()
if args.enable_gcp_telemetry:
add_gcp_telemetry()
ai.run_main(main())