Skip to main content
Glama

Genkit MCP

Official
by firebase
flows.py2.28 kB
# Copyright 2025 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import base64 import os from case_05.prompts import s05_readMenuPrompt, s05_textMenuPrompt from menu_ai import ai from menu_schemas import ( AnswerOutputSchema, MenuQuestionInputSchema, ReadMenuPromptOutputSchema, TextMenuQuestionInputSchema, ) @ai.flow(name='s05_readMenuFlow') async def s05_readMenuFlow(_) -> ReadMenuPromptOutputSchema: image_data_url = inline_data_url('menu.jpeg', 'image/jpeg') response = await s05_readMenuPrompt( image_url=image_data_url, ) return ReadMenuPromptOutputSchema( menu_text=response.text, ) @ai.flow(name='s05_textMenuQuestion') async def s05_textMenuQuestionFlow( my_input: TextMenuQuestionInputSchema, ) -> AnswerOutputSchema: response = await s05_textMenuPrompt( menu_text=my_input.menu_text, question=my_input.question, ) return ReadMenuPromptOutputSchema( menu_text=response.text, ) @ai.flow(name='s05_visionMenuQuestion') async def s05_visionMenuQuestionFlow( my_input: MenuQuestionInputSchema, ) -> AnswerOutputSchema: menu_result = await s05_readMenuFlow() return s05_textMenuQuestionFlow( my_input=TextMenuQuestionInputSchema( question=my_input.question, menu_text=menu_result.menu_text, ) ) def inline_data_url(image_filename: str, content_type: str) -> str: file_path = os.path.join(os.path.dirname(__file__), '..', '..', 'data', image_filename) with open(file_path, 'rb') as image_file: image_data = image_file.read() base64_data = base64.b64encode(image_data).decode('utf-8') return f'data:{content_type};base64,{base64_data}'

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server