google_genai_hello.py•10 kB
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
"""Hello Google GenAI sample.
Key features demonstrated in this sample:
| Feature Description | Example Function / Code Snippet |
|----------------------------------------------------------|----------------------------------------|
| Plugin Initialization | `ai = Genkit(plugins=[GoogleAI()])` |
| Default Model Configuration | `ai = Genkit(model=...)` |
| Defining Flows | `@ai.flow()` decorator (multiple uses) |
| Defining Tools | `@ai.tool()` decorator (multiple uses) |
| Pydantic for Tool Input Schema | `GablorkenInput` |
| Simple Generation (Prompt String) | `say_hi` |
| Generation with Messages (`Message`, `Role`, `TextPart`) | `simple_generate_with_tools_flow` |
| Generation with Tools | `simple_generate_with_tools_flow` |
| Tool Response Handling | `simple_generate_with_interrupts` |
| Tool Interruption (`ctx.interrupt`) | `gablorken_tool2` |
| Embedding (`ai.embed`, `Document`) | `embed_docs` |
| Generation Configuration (`temperature`, etc.) | `say_hi_with_configured_temperature` |
| Streaming Generation (`ai.generate_stream`) | `say_hi_stream` |
| Streaming Chunk Handling (`ctx.send_chunk`) | `say_hi_stream`, `generate_character` |
| Structured Output (Schema) | `generate_character` |
| Pydantic for Structured Output Schema | `RpgCharacter` |
| Unconstrained Structured Output | `generate_character_unconstrained` |
| Multi-modal Output Configuration | `generate_images` |
| GCP otel tracing | `add_gcp_telemetry()` |
"""
import structlog
from pydantic import BaseModel, Field
from genkit.ai import Document, Genkit, ToolRunContext, tool_response
from genkit.plugins.evaluators import (
GenkitEvaluators,
GenkitMetricType,
MetricConfig,
PluginOptions,
)
from genkit.plugins.google_cloud.telemetry.tracing import (
add_gcp_telemetry,
)
from genkit.plugins.google_genai import (
EmbeddingTaskType,
GeminiConfigSchema,
GoogleAI,
)
from genkit.types import (
ActionRunContext,
GenerationCommonConfig,
Message,
Role,
TextPart,
)
logger = structlog.get_logger(__name__)
add_gcp_telemetry()
ai = Genkit(
plugins=[
GoogleAI(),
GenkitEvaluators(
PluginOptions([
MetricConfig(metric_type=GenkitMetricType.REGEX),
MetricConfig(metric_type=GenkitMetricType.DEEP_EQUAL),
MetricConfig(metric_type=GenkitMetricType.JSONATA),
])
),
],
model='googleai/gemini-2.5-flash-preview-04-17',
)
class GablorkenInput(BaseModel):
"""The Pydantic model for tools."""
value: int = Field(description='value to calculate gablorken for')
@ai.tool(name='gablorkenTool')
def gablorken_tool(input_: GablorkenInput) -> int:
"""Calculate a gablorken.
Args:
input_: The input to calculate gablorken for.
Returns:
The calculated gablorken.
"""
return input_.value * 3 - 5
@ai.flow()
async def simple_generate_with_tools_flow(value: int, ctx: ActionRunContext) -> str:
"""Generate a greeting for the given name.
Args:
value: the integer to send to test function
Returns:
The generated response with a function.
"""
response = await ai.generate(
model='googleai/gemini-2.0-flash',
prompt=f'what is a gablorken of {value}',
tools=['gablorkenTool'],
on_chunk=ctx.send_chunk,
)
return response.text
@ai.tool(name='gablorkenTool2')
def gablorken_tool2(input_: GablorkenInput, ctx: ToolRunContext):
"""The user-defined tool function.
Args:
input_: the input to the tool
ctx: the tool run context
Returns:
The calculated gablorken.
"""
ctx.interrupt()
@ai.flow()
async def simple_generate_with_interrupts(value: int) -> str:
"""Generate a greeting for the given name.
Args:
value: the integer to send to test function
Returns:
The generated response with a function.
"""
response1 = await ai.generate(
model='googleai/gemini-2.0-flash',
messages=[
Message(
role=Role.USER,
content=[TextPart(text=f'what is a gablorken of {value}')],
),
],
tools=['gablorkenTool2'],
)
await logger.ainfo(f'len(response.tool_requests)={len(response1.tool_requests)}')
if len(response1.interrupts) == 0:
return response1.text
tr = tool_response(response1.interrupts[0], 178)
response = await ai.generate(
model='googleai/gemini-2.0-flash',
messages=response1.messages,
tool_responses=[tr],
tools=['gablorkenTool'],
)
return response
@ai.flow()
async def say_hi(name: str):
"""Generate a greeting for the given name.
Args:
name: the name to send to test function
Returns:
The generated response with a function.
"""
resp = await ai.generate(
prompt=f'hi {name}',
)
return resp.text
@ai.flow()
async def embed_docs(docs: list[str]):
"""Generate an embedding for the words in a list.
Args:
docs: list of texts (string)
Returns:
The generated embedding.
"""
options = {'task_type': EmbeddingTaskType.CLUSTERING}
return await ai.embed(
embedder='googleai/text-embedding-004',
documents=[Document.from_text(doc) for doc in docs],
options=options,
)
@ai.flow()
async def say_hi_with_configured_temperature(data: str):
"""Generate a greeting for the given name.
Args:
data: the name to send to test function
Returns:
The generated response with a function.
"""
return await ai.generate(
messages=[Message(role=Role.USER, content=[TextPart(text=f'hi {data}')])],
config=GenerationCommonConfig(temperature=0.1),
)
@ai.flow()
async def say_hi_stream(name: str, ctx):
"""Generate a greeting for the given name.
Args:
name: the name to send to test function
ctx: the context of the tool
Returns:
The generated response with a function.
"""
stream, _ = ai.generate_stream(prompt=f'hi {name}')
result = ''
async for data in stream:
ctx.send_chunk(data.text)
for part in data.content:
result += part.root.text
return result
class Skills(BaseModel):
"""Skills for an RPG character."""
strength: int = Field(description='strength (0-100)')
charisma: int = Field(description='charisma (0-100)')
endurance: int = Field(description='endurance (0-100)')
class RpgCharacter(BaseModel):
"""An RPG character."""
name: str = Field(description='name of the character')
back_story: str = Field(description='back story', alias='backStory')
abilities: list[str] = Field(description='list of abilities (3-4)')
skills: Skills
@ai.flow()
async def generate_character(name: str, ctx):
"""Generate an RPG character.
Args:
name: the name of the character
ctx: the context of the tool
Returns:
The generated RPG character.
"""
if ctx.is_streaming:
stream, result = ai.generate_stream(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
)
async for data in stream:
ctx.send_chunk(data.output)
return (await result).output
else:
result = await ai.generate(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
)
return result.output
@ai.flow()
async def generate_character_unconstrained(name: str, ctx):
"""Generate an unconstrained RPG character.
Args:
name: the name of the character
ctx: the context of the tool
Returns:
The generated RPG character.
"""
result = await ai.generate(
prompt=f'generate an RPG character named {name}',
output_schema=RpgCharacter,
output_constrained=False,
output_instructions=True,
)
return result.output
@ai.flow()
async def generate_images(name: str, ctx):
"""Generate images for the given name.
Args:
name: the name to send to test function
ctx: the context of the tool
Returns:
The generated response with a function.
"""
result = await ai.generate(
prompt='tell me a about the Eifel Tower with photos',
config=GeminiConfigSchema(response_modalities=['text', 'image']),
)
return result
async def main() -> None:
"""Main function."""
await logger.ainfo(await say_hi(', tell me a joke'))
if __name__ == '__main__':
ai.run_main(main())