Skip to main content
Glama

Genkit MCP

Official
by firebase
context_caching.py3.44 kB
# Copyright 2025 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 """Sample that demonstrates caching of generation context in Genkit In this sample user actor supplies "Tom Sawyer" book content from Gutenberg library archive and model caches this context. As a result, model is capable to quickly relate to the book's content and answer the follow-up questions. """ import requests import structlog from pydantic import BaseModel, Field from genkit.ai import Genkit from genkit.plugins.google_genai import GoogleAI, googleai_name from genkit.plugins.google_genai.models.gemini import GoogleAIGeminiVersion from genkit.types import GenerationCommonConfig, Message, Role, TextPart logger = structlog.getLogger(__name__) ai = Genkit( plugins=[GoogleAI()], model=googleai_name(GoogleAIGeminiVersion.GEMINI_1_5_FLASH), ) # Tom Sawyer is taken as a sample book here DEFAULT_TEXT_FILE = 'https://www.gutenberg.org/cache/epub/74/pg74.txt' DEFAULT_QUERY = "What are Huck Finn's views on society, and how do they contrast with Tom’s" class BookContextInputSchema(BaseModel): query: str = Field(default=DEFAULT_QUERY, description='A question about the supplied text file') text_file_path: str = Field( default=DEFAULT_TEXT_FILE, description='Incoming reference to the text file (local or web)' ) @ai.flow(name='textContextFlow') async def text_context_flow(_input: BookContextInputSchema) -> str: if _input.text_file_path.startswith('http'): res = requests.get(_input.text_file_path) res.raise_for_status() text_file_content = res.text else: with open(_input.text_file_path) as text_file: text_file_content = text_file.read() llm_response = await ai.generate( messages=[ Message( role=Role.USER, content=[TextPart(text=text_file_content)], ), Message( role=Role.MODEL, content=[TextPart(text=f'Here is some analysis based on the text provided.')], metadata={ 'cache': { 'ttl_seconds': 300, } }, ), ], config=GenerationCommonConfig( version='gemini-1.5-flash-001', temperature=0.7, maxOutputTokens=1000, topK=50, topP=0.9, stopSequences=['END'], ), prompt=_input.query, return_tool_requests=False, ) return llm_response.text async def main() -> None: """Main entry point for the context caching sample. This function demonstrates how to use context caching in Genkit for improved performance. """ res = await text_context_flow(BookContextInputSchema()) await logger.ainfo('foo', result=res) if __name__ == '__main__': ai.run_main(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server