compat_oai_hello.py•7.42 kB
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
"""OpenAI sample."""
from decimal import Decimal
import httpx
import structlog
from pydantic import BaseModel, Field
from genkit.ai import ActionRunContext, Genkit
from genkit.plugins.compat_oai import OpenAI, openai_model
logger = structlog.get_logger(__name__)
ai = Genkit(plugins=[OpenAI()], model=openai_model('gpt-4o'))
class MyInput(BaseModel):
"""My input."""
a: int = Field(description='a field')
b: int = Field(description='b field')
@ai.flow()
def sum_two_numbers2(my_input: MyInput) -> int:
"""Sum two numbers.
Args:
my_input: The input to sum.
Returns:
The sum of the input.
"""
return my_input.a + my_input.b
@ai.flow()
async def say_hi(name: str) -> str:
"""Say hi to a name.
Args:
name: The name to say hi to.
Returns:
The response from the OpenAI API.
"""
response = await ai.generate(
model=openai_model('gpt-4'),
config={'model': 'gpt-4-0613', 'temperature': 1},
prompt=f'hi {name}',
)
return response.message.content[0].root.text
@ai.flow()
async def say_hi_stream(name: str) -> str:
"""Say hi to a name and stream the response.
Args:
name: The name to say hi to.
Returns:
The response from the OpenAI API.
"""
stream, _ = ai.generate_stream(
model=openai_model('gpt-4'),
config={'model': 'gpt-4-0613', 'temperature': 1},
prompt=f'hi {name}',
)
result = ''
async for data in stream:
for part in data.content:
result += part.root.text
return result
class WeatherRequest(BaseModel):
"""Weather request."""
latitude: Decimal
longitude: Decimal
class Temperature(BaseModel):
"""Temperature by location."""
location: str
temperature: Decimal
gablorken: Decimal
class WeatherResponse(BaseModel):
"""Weather response."""
answer: list[Temperature]
@ai.tool(description='Get current temperature for provided coordinates in celsius')
def get_weather_tool(coordinates: WeatherRequest) -> float:
"""Get the current temperature for provided coordinates in celsius.
Args:
coordinates: The coordinates to get the weather for.
Returns:
The current temperature for the provided coordinates.
"""
url = (
f'https://api.open-meteo.com/v1/forecast?'
f'latitude={coordinates.latitude}&longitude={coordinates.longitude}'
f'¤t=temperature_2m'
)
with httpx.Client() as client:
response = client.get(url)
data = response.json()
return float(data['current']['temperature_2m'])
@ai.flow()
async def get_weather_flow(location: str) -> str:
"""Get the weather for a location.
Args:
location: The location to get the weather for.
Returns:
The weather for the location.
"""
response = await ai.generate(
model=openai_model('gpt-4o-mini'),
system='You are an assistant that provides current weather information in JSON format.',
config={'model': 'gpt-4o-mini-2024-07-18', 'temperature': 1},
prompt=f"What's the weather like in {location} today?",
tools=['get_weather_tool'],
output_schema=WeatherResponse,
)
return response.message.content[0].root.text
@ai.flow()
async def get_weather_flow_stream(location: str) -> str:
"""Get the weather for a location using a stream.
Args:
location: The location to get the weather for.
Returns:
The weather for the location as a string.
"""
stream, _ = ai.generate_stream(
model=openai_model('gpt-4o'),
system='You are an assistant that provides current weather information in JSON format and calculates gablorken based on weather value',
config={'model': 'gpt-4o-2024-08-06', 'temperature': 1},
prompt=f"What's the weather like in {location} today?",
tools=['get_weather_tool', 'gablorkenTool'],
output_schema=WeatherResponse,
)
result = ''
async for data in stream:
for part in data.content:
result += part.root.text or ''
return result
class Skills(BaseModel):
"""A set of core character skills for an RPG character"""
strength: int = Field(description='strength (0-100)')
charisma: int = Field(description='charisma (0-100)')
endurance: int = Field(description='endurance (0-100)')
gablorket: int = Field(description='gablorken (0-100)')
class RpgCharacter(BaseModel):
"""An RPG character."""
name: str = Field(description='name of the character')
back_story: str = Field(description='back story', alias='backStory')
abilities: list[str] = Field(description='list of abilities (3-4)')
skills: Skills
class GablorkenInput(BaseModel):
"""The Pydantic model for tools."""
value: int = Field(description='value to calculate gablorken for')
@ai.tool(description='calculates a gablorken', name='gablorkenTool')
def gablorken_tool(input_: GablorkenInput) -> int:
"""Calculate a gablorken.
Args:
input_: The input to calculate gablorken for.
Returns:
The calculated gablorken.
"""
return input_.value * 3 - 5
@ai.flow()
async def generate_character(name: str, ctx: ActionRunContext):
"""Generate an RPG character.
Args:
name: the name of the character
ctx: the context of the tool
Returns:
The generated RPG character.
"""
if ctx.is_streaming:
stream, result = ai.generate_stream(
prompt=f'generate an RPG character named {name} with gablorken based on 42',
output_schema=RpgCharacter,
config={'model': 'gpt-4o-2024-08-06', 'temperature': 1},
tools=['gablorkenTool'],
)
async for data in stream:
ctx.send_chunk(data.output)
return (await result).output
else:
result = await ai.generate(
prompt=f'generate an RPG character named {name} with gablorken based on 13',
output_schema=RpgCharacter,
config={'model': 'gpt-4o-2024-08-06', 'temperature': 1},
tools=['gablorkenTool'],
)
return result.output
async def main() -> None:
"""Main entry point for the OpenAI sample."""
await logger.ainfo(sum_two_numbers2(MyInput(a=1, b=3)))
await logger.ainfo(await say_hi('John Doe'))
await logger.ainfo(await say_hi_stream('John Doe'))
await logger.ainfo(await get_weather_flow('London and Paris'))
await logger.ainfo(await get_weather_flow_stream('London and Paris'))
await logger.ainfo(await generate_character('LunaDoodle', lambda x: x))
await logger.ainfo(await generate_character('NoodleMan'))
if __name__ == '__main__':
ai.run_main(main())