Skip to main content
Glama

Genkit MCP

Official
by firebase
test_embedders.py5.82 kB
# Copyright 2025 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 """Unit tests for Ollama embedders package.""" import unittest from unittest.mock import AsyncMock, MagicMock import ollama as ollama_api from genkit.plugins.ollama.embedders import EmbeddingDefinition, OllamaEmbedder from genkit.types import ( Document, Embedding, EmbedRequest, EmbedResponse, TextPart, ) class TestOllamaEmbedderEmbed(unittest.IsolatedAsyncioTestCase): """Unit tests for OllamaEmbedder.embed method.""" async def asyncSetUp(self): """Common setup.""" self.mock_ollama_client_instance = AsyncMock() self.mock_ollama_client_factory = MagicMock(return_value=self.mock_ollama_client_instance) self.mock_embedding_definition = EmbeddingDefinition(name='test-embed-model', dimensions=1536) self.ollama_embedder = OllamaEmbedder( client=self.mock_ollama_client_factory, embedding_definition=self.mock_embedding_definition ) async def test_embed_single_document_single_content(self): """Test embed with a single document containing single text content.""" request = EmbedRequest( input=[ Document.from_text(text='hello world'), ] ) expected_ollama_embeddings = [[0.1, 0.2, 0.3]] self.mock_ollama_client_instance.embed.return_value = ollama_api.EmbedResponse( embeddings=expected_ollama_embeddings ) response = await self.ollama_embedder.embed(request) # Assertions self.mock_ollama_client_instance.embed.assert_awaited_once_with( model='test-embed-model', input=['hello world'], ) expected_genkit_embeddings = [Embedding(embedding=[0.1, 0.2, 0.3])] self.assertEqual(response, EmbedResponse(embeddings=expected_genkit_embeddings)) async def test_embed_multiple_documents_multiple_content(self): """Test embed with multiple documents, each with multiple text contents.""" request = EmbedRequest( input=[ Document(content=[TextPart(text='doc1_part1'), TextPart(text='doc1_part2')]), Document(content=[TextPart(text='doc2_part1')]), ] ) expected_ollama_embeddings = [[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]] self.mock_ollama_client_instance.embed.return_value = ollama_api.EmbedResponse( embeddings=expected_ollama_embeddings ) response = await self.ollama_embedder.embed(request) # Assertions self.mock_ollama_client_instance.embed.assert_awaited_once_with( model='test-embed-model', input=['doc1_part1', 'doc1_part2', 'doc2_part1'], ) expected_genkit_embeddings = [ Embedding(embedding=[0.1, 0.2]), Embedding(embedding=[0.3, 0.4]), Embedding(embedding=[0.5, 0.6]), ] self.assertEqual(response, EmbedResponse(embeddings=expected_genkit_embeddings)) async def test_embed_empty_input(self): """Test embed with an empty input request.""" request = EmbedRequest(input=[]) self.mock_ollama_client_instance.embed.return_value = ollama_api.EmbedResponse(embeddings=[]) response = await self.ollama_embedder.embed(request) # Assertions self.mock_ollama_client_instance.embed.assert_awaited_once_with( model='test-embed-model', input=[], ) self.assertEqual(response, EmbedResponse(embeddings=[])) async def test_embed_api_raises_exception(self): """Test embed method handles exception from client.embed.""" request = EmbedRequest(input=[Document(content=[TextPart(text='error text')])]) self.mock_ollama_client_instance.embed.side_effect = Exception('Ollama Embed API Error') with self.assertRaisesRegex(Exception, 'Ollama Embed API Error'): await self.ollama_embedder.embed(request) self.mock_ollama_client_instance.embed.assert_awaited_once() async def test_embed_response_mismatch_input_count(self): """Test embed when client returns fewer embeddings than input texts (edge case).""" request = EmbedRequest( input=[ Document(content=[TextPart(text='text1')]), Document(content=[TextPart(text='text2')]), ] ) # Simulate Ollama returning only one embedding for two inputs expected_ollama_embeddings = [[1.0, 2.0]] self.mock_ollama_client_instance.embed.return_value = ollama_api.EmbedResponse( embeddings=expected_ollama_embeddings ) response = await self.ollama_embedder.embed(request) # The current implementation will just use whatever embeddings are returned. # It's up to the caller or a higher layer to decide if this is an error. # This test ensures it doesn't crash and correctly maps the available embeddings. expected_genkit_embeddings = [Embedding(embedding=[1.0, 2.0])] self.assertEqual(response, EmbedResponse(embeddings=expected_genkit_embeddings)) self.assertEqual(len(response.embeddings), 1) # Confirm only one embedding was processed

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server