Skip to main content
Glama

Genkit MCP

Official
by firebase
index.ts8.84 kB
/** * @license * * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @module / */ import { embedderRef, modelActionMetadata, modelRef, type EmbedderReference, type Genkit, type ModelReference, type z, } from 'genkit'; import { genkitPlugin, type GenkitPlugin } from 'genkit/plugin'; import type { ActionType } from 'genkit/registry'; import { getDerivedParams } from './common/index.js'; import type { PluginOptions } from './common/types.js'; import { SUPPORTED_EMBEDDER_MODELS, VertexEmbeddingConfigSchema, defineVertexAIEmbedder, geminiEmbedding001, multimodalEmbedding001, textEmbedding004, textEmbedding005, textEmbeddingGecko003, textEmbeddingGeckoMultilingual001, textMultilingualEmbedding002, type VertexEmbeddingConfig, } from './embedder.js'; import { GeminiConfigSchema, SUPPORTED_GEMINI_MODELS, SafetySettingsSchema, defineGeminiKnownModel, defineGeminiModel, gemini, gemini10Pro, gemini15Flash, gemini15Pro, gemini20Flash, gemini20Flash001, gemini20FlashLite, gemini20FlashLitePreview0205, gemini20ProExp0205, gemini25FlashLite, gemini25FlashPreview0417, gemini25ProExp0325, gemini25ProPreview0325, type GeminiConfig, type GeminiVersionString, } from './gemini.js'; import { GENERIC_IMAGEN_INFO, ImagenConfigSchema, SUPPORTED_IMAGEN_MODELS, defineImagenModel, imagen2, imagen3, imagen3Fast, type ACTUAL_IMAGEN_MODELS, } from './imagen.js'; import { listModels } from './list-models.js'; export type { PluginOptions } from './common/types.js'; export { GeminiConfigSchema, ImagenConfigSchema, SafetySettingsSchema, gemini, gemini10Pro, gemini15Flash, gemini15Pro, gemini20Flash, gemini20Flash001, gemini20FlashLite, gemini20FlashLitePreview0205, gemini20ProExp0205, gemini25FlashLite, gemini25FlashPreview0417, gemini25ProExp0325, gemini25ProPreview0325, geminiEmbedding001, imagen2, imagen3, imagen3Fast, multimodalEmbedding001, textEmbedding004, textEmbedding005, textEmbeddingGecko003, textEmbeddingGeckoMultilingual001, textMultilingualEmbedding002, type GeminiConfig, type GeminiVersionString, }; async function initializer(ai: Genkit, options?: PluginOptions) { const { projectId, location, vertexClientFactory, authClient } = await getDerivedParams(options); Object.keys(SUPPORTED_IMAGEN_MODELS).map((name) => defineImagenModel(ai, name, authClient, { projectId, location }) ); Object.keys(SUPPORTED_GEMINI_MODELS).map((name) => defineGeminiKnownModel( ai, name, vertexClientFactory, { projectId, location, }, options?.experimental_debugTraces ) ); if (options?.models) { for (const modelOrRef of options?.models) { const modelName = typeof modelOrRef === 'string' ? modelOrRef : // strip out the `vertexai/` prefix modelOrRef.name.split('/')[1]; const modelRef = typeof modelOrRef === 'string' ? gemini(modelOrRef) : modelOrRef; defineGeminiModel({ ai, modelName: modelRef.name, version: modelName, modelInfo: modelRef.info, vertexClientFactory, options: { projectId, location, }, debugTraces: options.experimental_debugTraces, }); } } Object.keys(SUPPORTED_EMBEDDER_MODELS).map((name) => defineVertexAIEmbedder(ai, name, authClient, { projectId, location }) ); } async function resolver( ai: Genkit, actionType: ActionType, actionName: string, options?: PluginOptions ) { // TODO: also support other actions like 'embedder' switch (actionType) { case 'model': await resolveModel(ai, actionName, options); break; case 'embedder': await resolveEmbedder(ai, actionName, options); break; default: // no-op } } async function resolveModel( ai: Genkit, actionName: string, options?: PluginOptions ) { const { projectId, location, vertexClientFactory, authClient } = await getDerivedParams(options); if (actionName.startsWith('imagen')) { defineImagenModel(ai, actionName, authClient, { projectId, location }); return; } const modelRef = gemini(actionName); defineGeminiModel({ ai, modelName: modelRef.name, version: actionName, modelInfo: modelRef.info, vertexClientFactory, options: { projectId, location, }, debugTraces: options?.experimental_debugTraces, }); } async function resolveEmbedder( ai: Genkit, actionName: string, options?: PluginOptions ) { const { projectId, location, authClient } = await getDerivedParams(options); defineVertexAIEmbedder(ai, actionName, authClient, { projectId, location }); } // Vertex AI list models still returns these and the API does not indicate in any way // that those models are not served anymore. const KNOWN_DECOMISSIONED_MODELS = [ 'gemini-pro-vision', 'gemini-pro', 'gemini-ultra', 'gemini-ultra-vision', ]; async function listActions(options?: PluginOptions) { const { location, projectId, authClient } = await getDerivedParams(options); const models = await listModels(authClient, location, projectId); // Vertex has a lot of models, and no way to figure out the "type" of the model... // so, for list actions we only fetch known model "families". return [ // Gemini ...models .filter( (m) => m.name.includes('gemini') && !KNOWN_DECOMISSIONED_MODELS.includes(m.name.split('/').at(-1)!) ) .map((m) => { const ref = gemini(m.name.split('/').at(-1)!); return modelActionMetadata({ name: ref.name, info: ref.info, configSchema: GeminiConfigSchema, }); }), // Imagen ...models .filter((m) => m.name.includes('imagen')) .map((m) => { const name = m.name.split('/').at(-1)!; return modelActionMetadata({ name: 'vertexai/' + name, info: { ...GENERIC_IMAGEN_INFO, label: `Vertex AI - ${name}`, }, configSchema: ImagenConfigSchema, }); }), ]; } /** * Add Google Cloud Vertex AI to Genkit. Includes Gemini and Imagen models and text embedder. */ function vertexAIPlugin(options?: PluginOptions): GenkitPlugin { let listActionsCache; return genkitPlugin( 'vertexai', async (ai: Genkit) => await initializer(ai, options), async (ai: Genkit, actionType: ActionType, actionName: string) => await resolver(ai, actionType, actionName, options), async () => { if (listActionsCache) return listActionsCache; listActionsCache = await listActions(options); return listActionsCache; } ); } export type VertexAIPlugin = { (params?: PluginOptions): GenkitPlugin; model( name: keyof typeof SUPPORTED_GEMINI_MODELS | (`gemini-${string}` & {}), config?: z.infer<typeof GeminiConfigSchema> ): ModelReference<typeof GeminiConfigSchema>; model( name: keyof typeof ACTUAL_IMAGEN_MODELS | (`imagen${string}` & {}), config?: z.infer<typeof ImagenConfigSchema> ): ModelReference<typeof ImagenConfigSchema>; model(name: string, config?: any): ModelReference<z.ZodTypeAny>; embedder( name: string, config?: VertexEmbeddingConfig ): EmbedderReference<typeof VertexEmbeddingConfigSchema>; }; /** * Google Cloud Vertex AI plugin for Genkit. * Includes Gemini and Imagen models and text embedder. */ export const vertexAI = vertexAIPlugin as VertexAIPlugin; // provide generic implementation for the model function overloads. (vertexAI as any).model = ( name: string, config?: any ): ModelReference<z.ZodTypeAny> => { if (name.startsWith('imagen')) { return modelRef({ name: `vertexai/${name}`, config, configSchema: ImagenConfigSchema, }); } return modelRef({ name: `vertexai/${name}`, config, configSchema: GeminiConfigSchema, }); }; vertexAI.embedder = ( name: string, config?: VertexEmbeddingConfig ): EmbedderReference<typeof VertexEmbeddingConfigSchema> => { return embedderRef({ name: `vertexai/${name}`, config, configSchema: VertexEmbeddingConfigSchema, }); }; export default vertexAI;

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server