Skip to main content
Glama

Genkit MCP

Official
by firebase
answer_accuracy.ts2.62 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import type { Genkit, ModelArgument, z } from 'genkit'; import { EvalStatusEnum, type BaseEvalDataPoint, type Score, } from 'genkit/evaluator'; import path from 'path'; import { getDirName, loadPromptFile, renderText } from './helper.js'; export async function answerAccuracyScore< CustomModelOptions extends z.ZodTypeAny, >( ai: Genkit, judgeLlm: ModelArgument<CustomModelOptions>, dataPoint: BaseEvalDataPoint, judgeConfig?: CustomModelOptions ): Promise<Score> { if (!dataPoint.output) { throw new Error('Output was not provided'); } if (!dataPoint.reference) { throw new Error('Reference was not provided'); } const input = typeof dataPoint.input === 'string' ? dataPoint.input : JSON.stringify(dataPoint.input); const output = typeof dataPoint.output === 'string' ? dataPoint.output : JSON.stringify(dataPoint.output); const reference = typeof dataPoint.reference === 'string' ? dataPoint.reference : JSON.stringify(dataPoint.reference); const prompt = await loadPromptFile( path.resolve(getDirName(), '../../prompts/answer_accuracy.prompt') ); const origResp = await ai.generate({ model: judgeLlm, config: judgeConfig, prompt: await renderText(prompt, { query: input, output, reference, }), }); const origScore = Number.parseInt(origResp.text); if (Number.isNaN(origScore)) { throw new Error('Error generating original response for answer accuracy'); } const invResp = await ai.generate({ model: judgeLlm, config: judgeConfig, prompt: await renderText(prompt, { query: input, output: reference, reference: output, }), }); const invScore = Number.parseInt(invResp.text); if (Number.isNaN(invScore)) { throw new Error('Error generating inverted response for answer accuracy'); } const score = (origScore + invScore) / 8; return { score, status: score >= 0.5 ? EvalStatusEnum.PASS : EvalStatusEnum.FAIL, }; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server