Skip to main content
Glama
firebase
by firebase
index.ts8.27 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { genkit, z } from 'genkit'; const ai = genkit({}); // TEST FLOW: Long-running flow for broadcast testing (2-3 minutes) export const testLongBroadcast = ai.defineFlow( { name: 'test-long-broadcast', inputSchema: z.object({ steps: z.number().default(10).describe('Number of steps to execute'), stepDelay: z .number() .default(15000) .describe('Delay in ms between steps (default 15s)'), }), outputSchema: z.object({ totalDuration: z.number(), stepsCompleted: z.number(), timeline: z.array( z.object({ step: z.number(), timestamp: z.string(), elapsed: z.number(), }) ), }), }, async ({ steps = 10, stepDelay = 15000 }) => { const startTime = Date.now(); const timeline: Array<{ step: number; timestamp: string; elapsed: number; }> = []; console.log( `🚀 Starting long broadcast test: ${steps} steps × ${stepDelay / 1000}s = ~${(steps * stepDelay) / 60000} minutes` ); for (let i = 1; i <= steps; i++) { const stepStart = Date.now(); await ai.run(`step-${i}`, async () => { console.log( `[${new Date().toISOString()}] 🔄 Step ${i}/${steps} starting...` ); // Simulate some work with nested spans await ai.run(`step-${i}-fetch`, async () => { await new Promise((resolve) => setTimeout(resolve, stepDelay / 3)); console.log(` 📡 Fetched data for step ${i}`); return `fetch-${i}`; }); await ai.run(`step-${i}-process`, async () => { await new Promise((resolve) => setTimeout(resolve, stepDelay / 3)); console.log(` ⚙️ Processed data for step ${i}`); return `process-${i}`; }); await ai.run(`step-${i}-save`, async () => { await new Promise((resolve) => setTimeout(resolve, stepDelay / 3)); console.log(` 💾 Saved results for step ${i}`); return `save-${i}`; }); const elapsed = Date.now() - stepStart; console.log( `[${new Date().toISOString()}] ✅ Step ${i}/${steps} completed (${elapsed}ms)` ); timeline.push({ step: i, timestamp: new Date().toISOString(), elapsed, }); return `Step ${i} complete`; }); } const totalDuration = Date.now() - startTime; console.log( `🎉 Long broadcast test completed in ${totalDuration / 1000}s (${(totalDuration / 60000).toFixed(1)} minutes)` ); return { totalDuration, stepsCompleted: steps, timeline, }; } ); /** * To run this flow; * genkit flow:run basic "\"hello\"" */ export const basic = ai.defineFlow( { name: 'basic', inputSchema: z.string() }, async (subject) => { const foo = await ai.run('call-llm', async () => { return `subject: ${subject}`; }); return await ai.run('call-llm1', async () => { return `foo: ${foo}`; }); } ); export const parent = ai.defineFlow( { name: 'parent', outputSchema: z.string() }, async () => { return JSON.stringify(await basic('foo')); } ); export const withInputSchema = ai.defineFlow( { name: 'withInputSchema', inputSchema: z.object({ subject: z.string() }) }, async (input) => { const foo = await ai.run('call-llm', async () => { return `subject: ${input.subject}`; }); return await ai.run('call-llm1', async () => { return `foo: ${foo}`; }); } ); export const withContext = ai.defineFlow( { name: 'withContext', inputSchema: z.object({ subject: z.string() }), }, async (input, { context }) => { return `subject: ${input.subject}, context: ${JSON.stringify(context)}`; } ); // genkit flow:run streamy 5 -s export const streamy = ai.defineFlow( { name: 'streamy', inputSchema: z.number(), outputSchema: z.string(), streamSchema: z.object({ count: z.number() }), }, async (count: number, { sendChunk }: any) => { let i = 0; for (; i < count; i++) { await new Promise((r) => setTimeout(r, 1000)); sendChunk({ count: i }); } return `done: ${count}, streamed: ${i} times`; } ); // genkit flow:run streamyThrowy 5 -s export const streamyThrowy = ai.defineFlow( { name: 'streamyThrowy', inputSchema: z.number(), outputSchema: z.string(), streamSchema: z.object({ count: z.number() }), }, async (count, { sendChunk }) => { let i = 0; for (; i < count; i++) { if (i == 3) { throw new Error('whoops'); } await new Promise((r) => setTimeout(r, 1000)); sendChunk({ count: i }); } return `done: ${count}, streamed: ${i} times`; } ); /** * To run this flow; * genkit flow:run throwy "\"hello\"" */ export const throwy = ai.defineFlow( { name: 'throwy', inputSchema: z.string(), outputSchema: z.string() }, async (subject) => { const foo = await ai.run('call-llm', async () => { return `subject: ${subject}`; }); if (subject) { throw new Error(subject); } return await ai.run('call-llm', async () => { return `foo: ${foo}`; }); } ); /** * To run this flow; * genkit flow:run throwy2 "\"hello\"" */ export const throwy2 = ai.defineFlow( { name: 'throwy2', inputSchema: z.string(), outputSchema: z.string() }, async (subject) => { const foo = await ai.run('call-llm', async () => { if (subject) { throw new Error(subject); } return `subject: ${subject}`; }); return await ai.run('call-llm', async () => { return `foo: ${foo}`; }); } ); export const flowMultiStepCaughtError = ai.defineFlow( { name: 'flowMultiStepCaughtError' }, async (input: any) => { let i = 1; const result1 = await ai.run('step1', async () => { return `${input} ${i++},`; }); let result2 = ''; try { result2 = await ai.run('step2', async () => { if (result1) { throw new Error('Got an error!'); } return `${result1} ${i++},`; }); } catch (e) {} return await ai.run('step3', async () => { return `${result2} ${i++}`; }); } ); export const multiSteps = ai.defineFlow( { name: 'multiSteps', inputSchema: z.string(), outputSchema: z.number() }, async (input) => { const out1 = await ai.run('step1', async () => { return `Hello, ${input}! step 1`; }); await ai.run('step1', async () => { return `Hello2222, ${input}! step 1`; }); const out2 = await ai.run('step2', out1, async () => { return out1 + ' Faf '; }); const out3 = await ai.run('step3-array', async () => { return [out2, out2]; }); const out4 = await ai.run('step4-num', async () => { return out3.join('-()-'); }); return 42; } ); export const largeSteps = ai.defineFlow({ name: 'largeSteps' }, async () => { await ai.run('large-step1', async () => { return generateString(100_000); }); await ai.run('large-step2', async () => { return generateString(800_000); }); await ai.run('large-step3', async () => { return generateString(900_000); }); await ai.run('large-step4', async () => { return generateString(999_000); }); return 'something...'; }); const loremIpsum = [ 'lorem', 'ipsum', 'dolor', 'sit', 'amet', 'consectetur', 'adipiscing', 'elit', ]; function generateString(length: number) { let str = ''; while (str.length < length) { str += loremIpsum[Math.floor(Math.random() * loremIpsum.length)] + ' '; } return str.substring(0, length); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server