/**
* Copyright 2025 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import * as assert from 'assert';
import { genkit, z } from 'genkit';
import { describe, it } from 'node:test';
import { anthropic } from '../src/index.js';
import { __testClient } from '../src/types.js';
import {
createMockAnthropicClient,
createMockAnthropicMessage,
mockContentBlockStart,
mockMessageWithContent,
mockMessageWithToolUse,
mockTextChunk,
} from './mocks/anthropic-client.js';
import { PluginOptions } from '../src/types.js';
describe('Anthropic Integration', () => {
it('should successfully generate a response', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Hello',
});
assert.strictEqual(result.text, 'Hello! How can I help you today?');
});
it('should handle tool calling workflow (call tool, receive result, generate final response)', async () => {
const mockClient = createMockAnthropicClient({
sequentialResponses: [
// First response: tool use request
mockMessageWithToolUse('get_weather', { city: 'NYC' }),
// Second response: final text after tool result
createMockAnthropicMessage({
text: 'The weather in NYC is sunny, 72°F',
}),
],
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
// Define the tool
ai.defineTool(
{
name: 'get_weather',
description: 'Get the weather for a city',
inputSchema: z.object({
city: z.string(),
}),
},
async (input: { city: string }) => {
return `The weather in ${input.city} is sunny, 72°F`;
}
);
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'What is the weather in NYC?',
tools: ['get_weather'],
});
assert.ok(
result.text.includes('NYC') ||
result.text.includes('sunny') ||
result.text.includes('72')
);
});
it('should handle multi-turn conversations', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
// First turn
const response1 = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'My name is Alice',
});
// Second turn with conversation history
const response2 = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: "What's my name?",
messages: response1.messages,
});
// Verify conversation history is maintained
assert.ok(
response2.messages.length >= 2,
'Should have conversation history'
);
assert.strictEqual(response2.messages[0].role, 'user');
assert.ok(
response2.messages[0].content[0].text?.includes('Alice') ||
response2.messages[0].content[0].text?.includes('name')
);
});
it('should stream responses with streaming callback', async () => {
const mockClient = createMockAnthropicClient({
streamChunks: [
mockContentBlockStart('Hello'),
mockTextChunk(' world'),
mockTextChunk('!'),
],
messageResponse: {
content: [{ type: 'text', text: 'Hello world!', citations: null }],
usage: {
input_tokens: 5,
output_tokens: 15,
cache_creation_input_tokens: 0,
cache_read_input_tokens: 0,
cache_creation: null,
server_tool_use: null,
service_tier: null,
},
},
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const chunks: any[] = [];
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Say hello world',
streamingCallback: (chunk) => {
chunks.push(chunk);
},
});
assert.ok(chunks.length > 0, 'Should have received streaming chunks');
assert.ok(result.text, 'Should have final response text');
});
it('should handle media/image inputs', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
messages: [
{
role: 'user',
content: [
{ text: 'Describe this image:' },
{
media: {
url: '',
contentType: 'image/png',
},
},
],
},
],
});
assert.ok(result.text, 'Should generate response for image input');
});
it('should handle WEBP image inputs', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
messages: [
{
role: 'user',
content: [
{ text: 'Describe this image:' },
{
media: {
url: '',
contentType: 'image/webp',
},
},
],
},
],
});
assert.ok(result.text, 'Should generate response for WEBP image input');
// Verify the request was made with correct media_type
const createStub = mockClient.messages.create as any;
assert.strictEqual(createStub.mock.calls.length, 1);
const requestBody = createStub.mock.calls[0].arguments[0];
const imageContent = requestBody.messages[0].content.find(
(c: any) => c.type === 'image'
);
assert.ok(imageContent, 'Should have image content in request');
assert.strictEqual(
imageContent.source.media_type,
'image/webp',
'Should use WEBP media type from data URL'
);
});
it('should handle WEBP image with mismatched contentType (prefers data URL)', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
messages: [
{
role: 'user',
content: [
{
media: {
// Data URL says WEBP, but contentType says PNG - should use WEBP
url: '',
contentType: 'image/png',
},
},
],
},
],
});
assert.ok(result.text, 'Should generate response for WEBP image input');
// Verify the request was made with WEBP (from data URL), not PNG (from contentType)
const createStub = mockClient.messages.create as any;
assert.strictEqual(createStub.mock.calls.length, 1);
const requestBody = createStub.mock.calls[0].arguments[0];
const imageContent = requestBody.messages[0].content.find(
(c: any) => c.type === 'image'
);
assert.ok(imageContent, 'Should have image content in request');
assert.strictEqual(
imageContent.source.media_type,
'image/webp',
'Should prefer data URL content type (webp) over contentType (png)'
);
});
it('should throw helpful error for text/plain media', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
await assert.rejects(
async () => {
await ai.generate({
model: 'anthropic/claude-3-5-haiku',
messages: [
{
role: 'user',
content: [
{
media: {
url: 'data:text/plain;base64,AAA',
contentType: 'text/plain',
},
},
],
},
],
});
},
(error: Error) => {
return (
error.message.includes('Text files should be sent as text content') &&
error.message.includes('text:')
);
},
'Should throw helpful error for text/plain media'
);
});
it('should forward thinking config and surface reasoning in responses', async () => {
const thinkingContent = [
{
type: 'thinking' as const,
thinking: 'Let me analyze the problem carefully.',
signature: 'sig_reasoning_123',
},
{
type: 'text' as const,
text: 'The answer is 42.',
citations: null,
},
];
const mockClient = createMockAnthropicClient({
messageResponse: mockMessageWithContent(thinkingContent),
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const thinkingConfig = { enabled: true, budgetTokens: 2048 };
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'What is the meaning of life?',
config: { thinking: thinkingConfig },
});
const createStub = mockClient.messages.create as any;
assert.strictEqual(createStub.mock.calls.length, 1);
const requestBody = createStub.mock.calls[0].arguments[0];
assert.deepStrictEqual(requestBody.thinking, {
type: 'enabled',
budget_tokens: 2048,
});
assert.strictEqual(
result.reasoning,
'Let me analyze the problem carefully.'
);
const assistantMessage = result.messages[result.messages.length - 1];
const reasoningPart = assistantMessage.content.find(
(part) => part.reasoning
);
assert.ok(reasoningPart, 'Expected reasoning part in assistant message');
assert.strictEqual(
reasoningPart?.custom?.anthropicThinking?.signature,
'sig_reasoning_123'
);
});
it('should propagate API errors correctly', async () => {
const apiError = new Error('API Error: 401 Unauthorized');
const mockClient = createMockAnthropicClient({
shouldError: apiError,
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
await assert.rejects(
async () => {
await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Hello',
});
},
(error: Error) => {
assert.strictEqual(error.message, 'API Error: 401 Unauthorized');
return true;
}
);
});
it('should respect abort signals for cancellation', async () => {
// Note: Detailed abort signal handling is tested in converters_test.ts
// This test verifies that errors (including abort errors) are properly propagated at the integration layer
const mockClient = createMockAnthropicClient({
shouldError: new Error('AbortError'),
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
await assert.rejects(
async () => {
await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Hello',
});
},
(error: Error) => {
// Should propagate the error
assert.ok(
error.message.includes('AbortError'),
'Should propagate errors'
);
return true;
}
);
});
it('should track token usage in responses', async () => {
const mockClient = createMockAnthropicClient({
messageResponse: {
usage: {
input_tokens: 25,
output_tokens: 50,
cache_creation_input_tokens: 5,
cache_read_input_tokens: 10,
cache_creation: null,
server_tool_use: null,
service_tier: null,
},
},
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Hello',
});
assert.ok(result.usage, 'Should have usage information');
assert.strictEqual(result.usage.inputTokens, 25);
assert.strictEqual(result.usage.outputTokens, 50);
});
it('should route requests through beta surface when plugin default is beta', async () => {
const mockClient = createMockAnthropicClient();
const ai = genkit({
plugins: [
anthropic({
apiVersion: 'beta',
[__testClient]: mockClient,
} as PluginOptions),
],
});
await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Hello',
});
const betaCreateStub = mockClient.beta.messages.create as any;
assert.strictEqual(
betaCreateStub.mock.calls.length,
1,
'Beta API should be used'
);
const regularCreateStub = mockClient.messages.create as any;
assert.strictEqual(
regularCreateStub.mock.calls.length,
0,
'Stable API should not be used'
);
});
it('should stream thinking deltas as reasoning chunks', async () => {
const thinkingConfig = { enabled: true, budgetTokens: 3072 };
const streamChunks = [
{
type: 'content_block_start',
index: 0,
content_block: {
type: 'thinking',
thinking: '',
signature: 'sig_stream_123',
},
} as any,
{
type: 'content_block_delta',
index: 0,
delta: {
type: 'thinking_delta',
thinking: 'Analyzing intermediate steps.',
},
} as any,
{
type: 'content_block_start',
index: 1,
content_block: {
type: 'text',
text: '',
},
} as any,
mockTextChunk('Final streamed response.'),
];
const finalMessage = mockMessageWithContent([
{
type: 'thinking',
thinking: 'Analyzing intermediate steps.',
signature: 'sig_stream_123',
},
{
type: 'text',
text: 'Final streamed response.',
citations: null,
},
]);
const mockClient = createMockAnthropicClient({
streamChunks,
messageResponse: finalMessage,
});
const ai = genkit({
plugins: [anthropic({ [__testClient]: mockClient } as PluginOptions)],
});
const chunks: any[] = [];
const result = await ai.generate({
model: 'anthropic/claude-3-5-haiku',
prompt: 'Explain how you reason.',
streamingCallback: (chunk) => chunks.push(chunk),
config: { thinking: thinkingConfig },
});
const streamStub = mockClient.messages.stream as any;
assert.strictEqual(streamStub.mock.calls.length, 1);
const streamRequest = streamStub.mock.calls[0].arguments[0];
assert.deepStrictEqual(streamRequest.thinking, {
type: 'enabled',
budget_tokens: 3072,
});
const hasReasoningChunk = chunks.some((chunk) =>
(chunk.content || []).some(
(part: any) => part.reasoning === 'Analyzing intermediate steps.'
)
);
assert.ok(
hasReasoningChunk,
'Expected reasoning chunk in streaming callback'
);
assert.strictEqual(result.reasoning, 'Analyzing intermediate steps.');
});
});