Skip to main content
Glama
firebase
by firebase
generate.go13.8 kB
// Copyright 2025 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package compat_oai import ( "context" "encoding/json" "fmt" "github.com/firebase/genkit/go/ai" "github.com/openai/openai-go" "github.com/openai/openai-go/packages/param" "github.com/openai/openai-go/shared" ) // mapToStruct unmarshals a map[string]any to the expected config api. func mapToStruct(m map[string]any, v any) error { jsonData, err := json.Marshal(m) if err != nil { return err } return json.Unmarshal(jsonData, v) } // ModelGenerator handles OpenAI generation requests type ModelGenerator struct { client *openai.Client modelName string request *openai.ChatCompletionNewParams messages []openai.ChatCompletionMessageParamUnion tools []openai.ChatCompletionToolParam toolChoice openai.ChatCompletionToolChoiceOptionUnionParam // Store any errors that occur during building err error } func (g *ModelGenerator) GetRequest() *openai.ChatCompletionNewParams { return g.request } // NewModelGenerator creates a new ModelGenerator instance func NewModelGenerator(client *openai.Client, modelName string) *ModelGenerator { return &ModelGenerator{ client: client, modelName: modelName, request: &openai.ChatCompletionNewParams{ Model: (modelName), }, } } // WithMessages adds messages to the request func (g *ModelGenerator) WithMessages(messages []*ai.Message) *ModelGenerator { // Return early if we already have an error if g.err != nil { return g } if messages == nil { return g } oaiMessages := make([]openai.ChatCompletionMessageParamUnion, 0, len(messages)) for _, msg := range messages { content := g.concatenateContent(msg.Content) switch msg.Role { case ai.RoleSystem: oaiMessages = append(oaiMessages, openai.SystemMessage(content)) case ai.RoleModel: am := openai.ChatCompletionAssistantMessageParam{} am.Content.OfString = param.NewOpt(content) toolCalls, err := convertToolCalls(msg.Content) if err != nil { g.err = err return g } if len(toolCalls) > 0 { am.ToolCalls = (toolCalls) } oaiMessages = append(oaiMessages, openai.ChatCompletionMessageParamUnion{ OfAssistant: &am, }) case ai.RoleTool: for _, p := range msg.Content { if !p.IsToolResponse() { continue } // Use the captured tool call ID (Ref) if available, otherwise fall back to tool name toolCallID := p.ToolResponse.Ref if toolCallID == "" { toolCallID = p.ToolResponse.Name } toolOutput, err := anyToJSONString(p.ToolResponse.Output) if err != nil { g.err = err return g } tm := openai.ToolMessage(toolOutput, toolCallID) oaiMessages = append(oaiMessages, tm) } case ai.RoleUser: parts := []openai.ChatCompletionContentPartUnionParam{} for _, p := range msg.Content { if p.IsText() { parts = append(parts, openai.TextContentPart(p.Text)) } if p.IsMedia() { part := openai.ImageContentPart( openai.ChatCompletionContentPartImageImageURLParam{ URL: p.Text, }) parts = append(parts, part) continue } } if len(parts) > 0 { oaiMessages = append(oaiMessages, openai.ChatCompletionMessageParamUnion{ OfUser: &openai.ChatCompletionUserMessageParam{ Content: openai.ChatCompletionUserMessageParamContentUnion{OfArrayOfContentParts: parts}, }, }) } default: // ignore parts from not supported roles continue } } g.messages = oaiMessages return g } // WithConfig adds configuration parameters from the model request // see https://platform.openai.com/docs/api-reference/responses/create // for more details on openai's request fields func (g *ModelGenerator) WithConfig(config any) *ModelGenerator { // Return early if we already have an error if g.err != nil { return g } if config == nil { return g } var openaiConfig openai.ChatCompletionNewParams switch cfg := config.(type) { case openai.ChatCompletionNewParams: openaiConfig = cfg case *openai.ChatCompletionNewParams: openaiConfig = *cfg case map[string]any: if err := mapToStruct(cfg, &openaiConfig); err != nil { g.err = fmt.Errorf("failed to convert config to openai.ChatCompletionNewParams: %w", err) return g } default: g.err = fmt.Errorf("unexpected config type: %T", config) return g } // keep the original model in the updated config structure openaiConfig.Model = g.request.Model g.request = &openaiConfig return g } // WithTools adds tools to the request func (g *ModelGenerator) WithTools(tools []*ai.ToolDefinition) *ModelGenerator { if g.err != nil { return g } if tools == nil { return g } toolParams := make([]openai.ChatCompletionToolParam, 0, len(tools)) for _, tool := range tools { if tool == nil || tool.Name == "" { continue } toolParams = append(toolParams, openai.ChatCompletionToolParam{ Function: (shared.FunctionDefinitionParam{ Name: tool.Name, Description: openai.String(tool.Description), Parameters: openai.FunctionParameters(tool.InputSchema), Strict: openai.Bool(false), // TODO: implement strict mode }), }) } // Set the tools in the request // If no tools are provided, set it to nil // This is important to avoid sending an empty array in the request // which is not supported by some vendor APIs if len(toolParams) > 0 { g.tools = toolParams } return g } // Generate executes the generation request func (g *ModelGenerator) Generate(ctx context.Context, req *ai.ModelRequest, handleChunk func(context.Context, *ai.ModelResponseChunk) error) (*ai.ModelResponse, error) { // Check for any errors that occurred during building if g.err != nil { return nil, g.err } if len(g.messages) == 0 { return nil, fmt.Errorf("no messages provided") } g.request.Messages = (g.messages) if len(g.tools) > 0 { g.request.Tools = (g.tools) } if handleChunk != nil { return g.generateStream(ctx, handleChunk) } return g.generateComplete(ctx, req) } // concatenateContent concatenates text content into a single string func (g *ModelGenerator) concatenateContent(parts []*ai.Part) string { content := "" for _, part := range parts { content += part.Text } return content } // generateStream generates a streaming model response func (g *ModelGenerator) generateStream(ctx context.Context, handleChunk func(context.Context, *ai.ModelResponseChunk) error) (*ai.ModelResponse, error) { stream := g.client.Chat.Completions.NewStreaming(ctx, *g.request) defer stream.Close() // Use openai-go's accumulator to collect the complete response acc := &openai.ChatCompletionAccumulator{} for stream.Next() { chunk := stream.Current() acc.AddChunk(chunk) if len(chunk.Choices) == 0 { continue } // Create chunk for callback modelChunk := &ai.ModelResponseChunk{} // Handle content delta if chunk.Choices[0].Delta.Content != "" { modelChunk.Content = append(modelChunk.Content, ai.NewTextPart(chunk.Choices[0].Delta.Content)) } // Handle tool call deltas for _, toolCall := range chunk.Choices[0].Delta.ToolCalls { // Send the incremental tool call part in the chunk if toolCall.Function.Name != "" || toolCall.Function.Arguments != "" { modelChunk.Content = append(modelChunk.Content, ai.NewToolRequestPart(&ai.ToolRequest{ Name: toolCall.Function.Name, Input: toolCall.Function.Arguments, Ref: toolCall.ID, })) } } // Call the chunk handler with incremental data if len(modelChunk.Content) > 0 { if err := handleChunk(ctx, modelChunk); err != nil { return nil, fmt.Errorf("callback error: %w", err) } } } if err := stream.Err(); err != nil { return nil, fmt.Errorf("stream error: %w", err) } // Convert accumulated ChatCompletion to ai.ModelResponse return convertChatCompletionToModelResponse(&acc.ChatCompletion) } // convertChatCompletionToModelResponse converts openai.ChatCompletion to ai.ModelResponse func convertChatCompletionToModelResponse(completion *openai.ChatCompletion) (*ai.ModelResponse, error) { if len(completion.Choices) == 0 { return nil, fmt.Errorf("no choices in completion") } choice := completion.Choices[0] // Build usage information with detailed token breakdown usage := &ai.GenerationUsage{ InputTokens: int(completion.Usage.PromptTokens), OutputTokens: int(completion.Usage.CompletionTokens), TotalTokens: int(completion.Usage.TotalTokens), } // Add reasoning tokens (thoughts tokens) if available if completion.Usage.CompletionTokensDetails.ReasoningTokens > 0 { usage.ThoughtsTokens = int(completion.Usage.CompletionTokensDetails.ReasoningTokens) } // Add cached tokens if available if completion.Usage.PromptTokensDetails.CachedTokens > 0 { usage.CachedContentTokens = int(completion.Usage.PromptTokensDetails.CachedTokens) } // Add audio tokens to custom field if available if completion.Usage.CompletionTokensDetails.AudioTokens > 0 { if usage.Custom == nil { usage.Custom = make(map[string]float64) } usage.Custom["audioTokens"] = float64(completion.Usage.CompletionTokensDetails.AudioTokens) } // Add prediction tokens to custom field if available if completion.Usage.CompletionTokensDetails.AcceptedPredictionTokens > 0 { if usage.Custom == nil { usage.Custom = make(map[string]float64) } usage.Custom["acceptedPredictionTokens"] = float64(completion.Usage.CompletionTokensDetails.AcceptedPredictionTokens) } if completion.Usage.CompletionTokensDetails.RejectedPredictionTokens > 0 { if usage.Custom == nil { usage.Custom = make(map[string]float64) } usage.Custom["rejectedPredictionTokens"] = float64(completion.Usage.CompletionTokensDetails.RejectedPredictionTokens) } resp := &ai.ModelResponse{ Request: &ai.ModelRequest{}, Usage: usage, Message: &ai.Message{ Role: ai.RoleModel, Content: make([]*ai.Part, 0), }, } // Map finish reason switch choice.FinishReason { case "stop", "tool_calls": resp.FinishReason = ai.FinishReasonStop case "length": resp.FinishReason = ai.FinishReasonLength case "content_filter": resp.FinishReason = ai.FinishReasonBlocked case "function_call": resp.FinishReason = ai.FinishReasonOther default: resp.FinishReason = ai.FinishReasonUnknown } // Set finish message if there's a refusal if choice.Message.Refusal != "" { resp.FinishMessage = choice.Message.Refusal resp.FinishReason = ai.FinishReasonBlocked } // Add text content if choice.Message.Content != "" { resp.Message.Content = append(resp.Message.Content, ai.NewTextPart(choice.Message.Content)) } // Add tool calls for _, toolCall := range choice.Message.ToolCalls { args, err := jsonStringToMap(toolCall.Function.Arguments) if err != nil { return nil, fmt.Errorf("could not parse tool args: %w", err) } resp.Message.Content = append(resp.Message.Content, ai.NewToolRequestPart(&ai.ToolRequest{ Ref: toolCall.ID, Name: toolCall.Function.Name, Input: args, })) } // Store additional metadata in custom field if needed if completion.SystemFingerprint != "" { resp.Custom = map[string]any{ "systemFingerprint": completion.SystemFingerprint, "model": completion.Model, "id": completion.ID, } } return resp, nil } // generateComplete generates a complete model response func (g *ModelGenerator) generateComplete(ctx context.Context, req *ai.ModelRequest) (*ai.ModelResponse, error) { completion, err := g.client.Chat.Completions.New(ctx, *g.request) if err != nil { return nil, fmt.Errorf("failed to create completion: %w", err) } resp, err := convertChatCompletionToModelResponse(completion) if err != nil { return nil, err } // Set the original request resp.Request = req return resp, nil } func convertToolCalls(content []*ai.Part) ([]openai.ChatCompletionMessageToolCallParam, error) { var toolCalls []openai.ChatCompletionMessageToolCallParam for _, p := range content { if !p.IsToolRequest() { continue } toolCall, err := convertToolCall(p) if err != nil { return nil, err } toolCalls = append(toolCalls, *toolCall) } return toolCalls, nil } func convertToolCall(part *ai.Part) (*openai.ChatCompletionMessageToolCallParam, error) { toolCallID := part.ToolRequest.Ref if toolCallID == "" { toolCallID = part.ToolRequest.Name } param := &openai.ChatCompletionMessageToolCallParam{ ID: (toolCallID), Function: (openai.ChatCompletionMessageToolCallFunctionParam{ Name: (part.ToolRequest.Name), }), } args, err := anyToJSONString(part.ToolRequest.Input) if err != nil { return nil, err } if part.ToolRequest.Input != nil { param.Function.Arguments = args } return param, nil } func jsonStringToMap(jsonString string) (map[string]any, error) { var result map[string]any if err := json.Unmarshal([]byte(jsonString), &result); err != nil { return nil, fmt.Errorf("unmarshal failed to parse json string %s: %w", jsonString, err) } return result, nil } func anyToJSONString(data any) (string, error) { jsonBytes, err := json.Marshal(data) if err != nil { return "", fmt.Errorf("failed to marshal any to JSON string: data, %#v %w", data, err) } return string(jsonBytes), nil }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server