Skip to main content
Glama

Genkit MCP

Official
by firebase
main.go5.88 kB
// Copyright 2025 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // SPDX-License-Identifier: Apache-2.0 // This program can be manually tested like so: // // In development mode (with the environment variable GENKIT_ENV="dev"): // Start the server listening on port 3100: // // go run . & // // Tell it to run a flow: // // curl -d '{"key":"/flow/simpleQaFlow/simpleQaFlow", "input":{"start": {"input":{"question": "What is the capital of UK?"}}}}' http://localhost:3100/api/runAction // // In production mode (GENKIT_ENV missing or set to "prod"): // Start the server listening on port 3400: // // go run . & // // Tell it to run a flow: // // curl -d '{"question": "What is the capital of UK?"}' http://localhost:3400/simpleQaFlow package main import ( "context" "fmt" "log" "strings" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/core" "github.com/firebase/genkit/go/core/api" "github.com/firebase/genkit/go/genkit" "github.com/firebase/genkit/go/plugins/evaluators" "github.com/firebase/genkit/go/plugins/googlegenai" "github.com/firebase/genkit/go/plugins/localvec" ) const simpleQaPromptTemplate = ` You're a helpful agent that answers the user's common questions based on the context provided. Here is the user's query: {{query}} Here is the context you should use: {{context}} Please provide the best answer you can. ` type simpleQaInput struct { Question string `json:"question"` } type simpleQaPromptInput struct { Query string `json:"query"` Context string `json:"context"` } func main() { ctx := context.Background() metrics := []evaluators.MetricConfig{ { MetricType: evaluators.EvaluatorDeepEqual, }, { MetricType: evaluators.EvaluatorRegex, }, { MetricType: evaluators.EvaluatorJsonata, }, } g := genkit.Init(ctx, genkit.WithPlugins(&googlegenai.GoogleAI{}, &evaluators.GenkitEval{Metrics: metrics})) embedder := googlegenai.GoogleAIEmbedder(g, "embedding-001") if embedder == nil { log.Fatal("embedder is not defined") } if err := localvec.Init(); err != nil { log.Fatal(err) } retOpts := &ai.RetrieverOptions{ ConfigSchema: core.InferSchemaMap(localvec.RetrieverOptions{}), Label: "simpleQa", Supports: &ai.RetrieverSupports{ Media: false, }, } docStore, retriever, err := localvec.DefineRetriever(g, "simpleQa", localvec.Config{Embedder: embedder}, retOpts) if err != nil { log.Fatal(err) } simpleQaPrompt := genkit.DefinePrompt(g, "simpleQaPrompt", ai.WithModelName("googleai/gemini-2.0-flash"), ai.WithPrompt(simpleQaPromptTemplate), ai.WithInputType(simpleQaPromptInput{}), ai.WithOutputFormat(ai.OutputFormatText), ) // Dummy evaluator for testing evalOptions := ai.EvaluatorOptions{ DisplayName: "Simple Evaluator", Definition: "Just says true or false randomly", IsBilled: false, } genkit.DefineEvaluator(g, api.NewName("custom", "simpleEvaluator"), &evalOptions, func(ctx context.Context, req *ai.EvaluatorCallbackRequest) (*ai.EvaluatorCallbackResponse, error) { m := make(map[string]any) m["reasoning"] = "No good reason" score := ai.Score{ Id: "testScore", Score: 1, Status: ai.ScoreStatusPass.String(), Details: m, } callbackResponse := ai.EvaluatorCallbackResponse{ TestCaseId: req.Input.TestCaseId, Evaluation: []ai.Score{score}, } return &callbackResponse, nil }) genkit.DefineBatchEvaluator(g, api.NewName("custom", "simpleBatchEvaluator"), &evalOptions, func(ctx context.Context, req *ai.EvaluatorRequest) (*ai.EvaluatorResponse, error) { var evalResponses []ai.EvaluationResult for _, datapoint := range req.Dataset { m := make(map[string]any) m["reasoning"] = fmt.Sprintf("batch of cookies, %s", datapoint.Input) score := ai.Score{ Id: "testScore", Score: true, Status: ai.ScoreStatusPass.String(), Details: m, } callbackResponse := ai.EvaluationResult{ TestCaseId: datapoint.TestCaseId, Evaluation: []ai.Score{score}, } evalResponses = append(evalResponses, callbackResponse) } return &evalResponses, nil }) genkit.DefineFlow(g, "simpleQaFlow", func(ctx context.Context, input *simpleQaInput) (string, error) { d1 := ai.DocumentFromText("Paris is the capital of France", nil) d4 := ai.DocumentFromText("India will become a new capital of France", nil) d2 := ai.DocumentFromText("USA is the largest importer of coffee", nil) d3 := ai.DocumentFromText("Water exists in 3 states - solid, liquid and gas", nil) err := localvec.Index(ctx, []*ai.Document{d1, d2, d3, d4}, docStore) if err != nil { return "", err } dRequest := ai.DocumentFromText(input.Question, nil) response, err := genkit.Retrieve(ctx, g, ai.WithRetriever(retriever), ai.WithDocs(dRequest), ai.WithConfig(&localvec.RetrieverOptions{K: 2})) if err != nil { return "", err } var sb strings.Builder for _, d := range response.Documents { sb.WriteString(d.Content[0].Text) sb.WriteByte('\n') } promptInput := &simpleQaPromptInput{ Query: input.Question, Context: sb.String(), } resp, err := simpleQaPrompt.Execute(ctx, ai.WithInput(promptInput)) if err != nil { return "", err } return resp.Text(), nil }) genkit.DefineFlow(g, "echoFlow", func(ctx context.Context, input string) (string, error) { return input, nil }) <-ctx.Done() }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server