Skip to main content
Glama

Genkit MCP

Official
by firebase
localvec_test.go5.65 kB
// Copyright 2025 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // SPDX-License-Identifier: Apache-2.0 package localvec import ( "context" "math" "strings" "testing" "github.com/firebase/genkit/go/ai" "github.com/firebase/genkit/go/core" "github.com/firebase/genkit/go/genkit" "github.com/firebase/genkit/go/internal/fakeembedder" ) func TestLocalVec(t *testing.T) { ctx := context.Background() g := genkit.Init(context.Background()) // Make two very similar vectors and one different vector. // Arrange for a fake embedder to return those vector // when provided with documents. const dim = 32 v1 := make([]float32, dim) v2 := make([]float32, dim) v3 := make([]float32, dim) for i := range v1 { v1[i] = float32(i) v2[i] = float32(i) v3[i] = float32(dim - i) } v2[0] = 1 d1 := ai.DocumentFromText("hello1", nil) d2 := ai.DocumentFromText("hello2", nil) d3 := ai.DocumentFromText("goodbye", nil) embedder := fakeembedder.New() embedder.Register(d1, v1) embedder.Register(d2, v2) embedder.Register(d3, v3) emdOpts := &ai.EmbedderOptions{ Dimensions: 32, Label: "", Supports: &ai.EmbedderSupports{ Input: []string{"text"}, }, ConfigSchema: nil, } embedAction := genkit.DefineEmbedder(g, "fake/embedder1", emdOpts, embedder.Embed) ds, err := newDocStore(t.TempDir(), "testLocalVec", embedAction, nil) if err != nil { t.Fatal(err) } err = Index(ctx, []*ai.Document{d1, d2, d3}, ds) if err != nil { t.Fatalf("Index operation failed: %v", err) } retrieverOptions := &RetrieverOptions{ K: 2, } retrieverReq := &ai.RetrieverRequest{ Query: d1, Options: retrieverOptions, } retrieverResp, err := ds.retrieve(ctx, retrieverReq) if err != nil { t.Fatalf("Retrieve operation failed: %v", err) } docs := retrieverResp.Documents if len(docs) != 2 { t.Errorf("got %d results, expected 2", len(docs)) } for _, d := range docs { text := d.Content[0].Text if !strings.HasPrefix(text, "hello") { t.Errorf("returned doc text %q does not start with %q", text, "hello") } } } func TestPersistentIndexing(t *testing.T) { ctx := context.Background() g := genkit.Init(context.Background()) const dim = 32 v1 := make([]float32, dim) v2 := make([]float32, dim) v3 := make([]float32, dim) for i := range v1 { v1[i] = float32(i) v2[i] = float32(i) v3[i] = float32(i) } d1 := ai.DocumentFromText("hello1", nil) d2 := ai.DocumentFromText("hello2", nil) d3 := ai.DocumentFromText("goodbye", nil) embedder := fakeembedder.New() embedder.Register(d1, v1) embedder.Register(d2, v2) embedder.Register(d3, v3) emdOpts := &ai.EmbedderOptions{ Dimensions: 32, Label: "", Supports: &ai.EmbedderSupports{ Input: []string{"text"}, }, ConfigSchema: nil, } embedAction := genkit.DefineEmbedder(g, "fake/embedder2", emdOpts, embedder.Embed) tDir := t.TempDir() ds, err := newDocStore(tDir, "testLocalVec", embedAction, nil) if err != nil { t.Fatal(err) } err = Index(ctx, []*ai.Document{d1, d2}, ds) if err != nil { t.Fatalf("Index operation failed: %v", err) } retrieverOptions := &RetrieverOptions{ K: 100, // fetch all docs } retrieverReq := &ai.RetrieverRequest{ Query: d1, Options: retrieverOptions, } retrieverResp, err := ds.retrieve(ctx, retrieverReq) if err != nil { t.Fatalf("Retrieve operation failed: %v", err) } docs := retrieverResp.Documents if len(docs) != 2 { t.Errorf("got %d results, expected 2", len(docs)) } dsAnother, err := newDocStore(tDir, "testLocalVec", embedAction, nil) if err != nil { t.Fatal(err) } err = Index(ctx, []*ai.Document{d3}, dsAnother) if err != nil { t.Fatalf("Index operation failed: %v", err) } retrieverOptions = &RetrieverOptions{ K: 100, // fetch all docs } retrieverReq = &ai.RetrieverRequest{ Query: d1, Options: retrieverOptions, } retrieverResp, err = dsAnother.retrieve(ctx, retrieverReq) if err != nil { t.Fatalf("Retrieve operation failed: %v", err) } docs = retrieverResp.Documents if len(docs) != 3 { t.Errorf("got %d results, expected 3", len(docs)) } } func TestSimilarity(t *testing.T) { x := []float32{5, 23, 2, 5, 9} y := []float32{3, 21, 2, 5, 14} got := similarity(x, y) want := 0.975 if math.Abs(got-want) > 0.001 { t.Errorf("got %f, want %f", got, want) } } func TestInit(t *testing.T) { g := genkit.Init(context.Background()) emdOpts := &ai.EmbedderOptions{ Dimensions: 768, Label: "", Supports: &ai.EmbedderSupports{ Input: []string{"text"}, }, ConfigSchema: nil, } embedder := genkit.DefineEmbedder(g, "fake/embedder3", emdOpts, fakeembedder.New().Embed) if err := Init(); err != nil { t.Fatal(err) } const name = "mystore" retOpts := &ai.RetrieverOptions{ ConfigSchema: core.InferSchemaMap(RetrieverOptions{}), Label: name, Supports: &ai.RetrieverSupports{ Media: false, }, } _, ret, err := DefineRetriever(g, name, Config{Embedder: embedder}, retOpts) if err != nil { t.Fatal(err) } want := "devLocalVectorStore/" + name if g := ret.Name(); g != want { t.Errorf("got %q, want %q", g, want) } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server