Skip to main content
Glama

rag

Answer questions by retrieving relevant information from a knowledge base and generating responses using customizable language models and search modes.

Instructions

Perform Retrieval-Augmented Generation (RAG) query with full parameter control.

This tool retrieves relevant context from the knowledge base and generates an answer using a language model. Supports all search modes (semantic, hybrid, graph) and customizable generation parameters.

Args: query: The question to answer using the knowledge base. Required. preset: Preset configuration for common use cases. Options: - "default": Basic RAG with gpt-4o-mini, temperature 0.7, 10 results - "development": Hybrid search with higher temperature for creative answers, 15 results - "refactoring": Hybrid + graph search with gpt-4o for code analysis, 20 results - "debug": Minimal graph search with low temperature for precise answers, 5 results - "research": Comprehensive search with gpt-4o for research questions, 30 results - "production": Balanced hybrid search optimized for production, 10 results model: LLM model to use for generation. Examples: - "vertex_ai/gemini-2.5-flash" (default, fast and cost-effective) - "vertex_ai/gemini-2.5-pro" (more capable, higher cost) - "openai/gpt-4-turbo" (high performance) - "anthropic/claude-3-haiku-20240307" (fast) - "anthropic/claude-3-sonnet-20240229" (balanced) - "anthropic/claude-3-opus-20240229" (most capable) temperature: Generation temperature controlling randomness. Must be between 0.0 and 1.0. Lower values (0.0-0.3) = more deterministic, precise answers Medium values (0.4-0.7) = balanced creativity and accuracy (default: 0.7) Higher values (0.8-1.0) = more creative, diverse answers max_tokens: Maximum number of tokens to generate. Optional, uses model default if not specified. use_semantic_search: Enable semantic/vector search for retrieval (default: True) use_hybrid_search: Enable hybrid search combining semantic and full-text search (default: False) use_graph_search: Enable knowledge graph search for entity/relationship context (default: False) limit: Maximum number of search results to retrieve. Must be between 1 and 100 (default: 10) kg_search_type: Knowledge graph search type. "local" for local context, "global" for broader connections (default: "local") semantic_weight: Weight for semantic search in hybrid mode. Must be between 0.0 and 10.0 (default: 5.0) full_text_weight: Weight for full-text search in hybrid mode. Must be between 0.0 and 10.0 (default: 1.0) full_text_limit: Maximum full-text results to consider in hybrid search. Must be between 1 and 1000 (default: 200) rrf_k: Reciprocal Rank Fusion parameter for hybrid search. Must be between 1 and 100 (default: 50) search_strategy: Advanced search strategy (e.g., "hyde", "rag_fusion"). Optional. include_web_search: Include web search results from the internet (default: False) task_prompt_override: Custom system prompt to override the default RAG task prompt. Useful for specializing AI behavior for specific domains or tasks. Optional.

Returns: Generated answer based on relevant context from the knowledge base.

Examples: # Simple RAG query rag("What is machine learning?")

# Development preset for code questions rag("How to implement async/await in Python?", preset="development") # Custom RAG with specific model and temperature rag( "Explain neural networks", model="vertex_ai/gemini-2.5-pro", temperature=0.5 ) # Research preset with comprehensive search rag( "Latest developments in transformer architectures", preset="research" ) # Debug preset for precise technical answers rag("What causes this error?", preset="debug")

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYes
presetNodefault
modelNovertex_ai/gemini-2.5-pro
temperatureNo
max_tokensNo
use_semantic_searchNo
use_hybrid_searchNo
use_graph_searchNo
limitNo
kg_search_typeNoglobal
semantic_weightNo
full_text_weightNo
full_text_limitNo
rrf_kNo
search_strategyNo
include_web_searchNo
task_prompt_overrideNo

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/evgenygurin/r2r-rag-search-agent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server