Skip to main content
Glama
evalstate

Hugging Face MCP Server

by evalstate
gradio-desc-kontext.json3.21 kB
{ "tools": [ { "name": "FLUX_1_Kontext_Dev_infer", "description": "Perform image editing using the FLUX.1 Kontext pipeline. This function takes an input image and a text prompt to generate a modified version of the image based on the provided instructions. It uses the FLUX.1 Kontext model for contextual image editing tasks. If a user passes a file as an input, use the upload_file_to_gradio tool, if present, to upload the file to the gradio app and create a Gradio File Input. Then use the returned path as the input to the tool. Returns: A 3-tuple containing:, PIL.Image.Image: The generated/edited image, int: The seed value used for generation (useful when randomize_seed=True), gr.update: Gradio update object to make the reuse button visible, , >>> edited_image, used_seed, button_update = infer(, ... input_image=my_image,, ... prompt=\"Add sunglasses\",, ... seed=123,, ... randomize_seed=False,, ... guidance_scale=2.5, ... )", "inputSchema": { "type": "object", "properties": { "input_image": { "title": "ImageData", "type": "string", "description": "The input image to be edited. Will be converted", "format": "Gradio File Input - a http or https url to a file" }, "prompt": { "type": "string", "description": "Text description of the desired edit to apply to the image." }, "seed": { "type": "number", "description": "Random seed for reproducible generation. Defaults to 42." }, "randomize_seed": { "type": "boolean", "description": "If True, generates a random seed instead of", "default": true }, "guidance_scale": { "type": "number", "description": "Controls how closely the model follows the", "default": 2.5 }, "steps": { "type": "number", "description": "Controls how many steps to run the diffusion model for.", "default": 28 } } } }, { "name": "FLUX_1_Kontext_Dev__lambda_", "description": " If a user passes a file as an input, use the upload_file_to_gradio tool, if present, to upload the file to the gradio app and create a Gradio File Input. Then use the returned path as the input to the tool", "inputSchema": { "type": "object", "properties": { "image": { "title": "ImageData", "type": "string", "format": "Gradio File Input - a http or https url to a file" } } } } ] }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/evalstate/hf-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server