Skip to main content
Glama

Math Expression MCP Server

by eriktilio
client.py1.66 kB
import asyncio import os from dotenv import load_dotenv from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_google_genai import ChatGoogleGenerativeAI load_dotenv() # Inicializa o modelo LLM llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", google_api_key=os.environ["GOOGLE_API_KEY"] ) # Criação de um PromptTemplate que recebe a pergunta prompt_template = PromptTemplate( input_variables=["question"], template="Extraia e retorne apenas a expressão matemática da seguinte pergunta: {question}" ) # Cria a LLMChain com o modelo e o prompt template chain = LLMChain(prompt=prompt_template, llm=llm) # Define os parâmetros do servidor MCP server_params = StdioServerParameters( command="python", args=["server.py"], ) async def run_agent(): print("Iniciando o agente...") # Conecta com o servidor MCP via stdio async with stdio_client(server_params) as (read, write): async with ClientSession(read, write) as session: await session.initialize() # Usa a LLMChain para obter a expressão matemática expression = await chain.apredict(question="quanto é 5 mais 5 menos 2 e dividido para 2?") print(f"Expressão extraída: {expression}") # Agora chama a ferramenta 'calculate_expression' com a expressão extraída result = await session.call_tool("calculate_expression", {"expr": expression}) print("Resultado:", result) if __name__ == "__main__": asyncio.run(run_agent())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/eriktilio/mcp-langchain-integration'

If you have feedback or need assistance with the MCP directory API, please join our Discord server