Skip to main content
Glama

Real Estate Investment MCP Server

by ericnsibley
data_load.py2.35 kB
import pandas as pd import sqlite3 import os import re SQLITE_DB = "Zillow_data" def load_and_unpivot_data(conn: sqlite3.Connection) -> None: prefix = "./zillow_data" date_pattern = re.compile(r"\d{4}-\d{2}-\d{2}") for filename in os.listdir(prefix): file_path = f"{prefix}/{filename}" table_name = ''.join(filename.split('.')[:-1]) df = pd.read_csv(file_path) print(f"Loaded {table_name} with shape {df.shape}") id_columns = [] date_columns = [] # If the column name matches yyyy-mm-dd then unpivot it for col in df.columns: if date_pattern.fullmatch(col): date_columns.append( col ) else: id_columns.append( col ) if len(date_columns) == 0: print(f"Skipping unpivoting {filename}: no time series date columns found") df_unpivoted = df else: # Melt to unpivot time series df_unpivoted = df.melt( id_vars=id_columns, value_vars=date_columns, var_name="ForecastDate", value_name="Value" ) print(f"df: {df.head()}") print(f"df_unpivoted: {df_unpivoted.head()}") rows = df_unpivoted.to_sql(table_name, conn, if_exists="replace", index=False) print(f"Wrote unpivoted table {table_name} with {rows} rows") def load_data(conn: sqlite3.Connection) -> None: prefix = "./zillow_data" for filename in os.listdir(prefix): file_path = f"{prefix}/{filename}" filename_without_extension = ''.join(filename.split('.')[:-1]) df = pd.read_csv(file_path) print(f"Loaded {filename_without_extension} with shape {df.shape}") rows = df.to_sql(filename_without_extension, conn, if_exists="replace") print(f"{rows} rows were written to table {filename_without_extension}") def list_tables(conn: sqlite3.Connection) -> None: cursor = conn.cursor() cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") tables = cursor.fetchall() print("Tables in database:") for name in tables: print(f"- {name[0]}") if __name__ == "__main__": conn = sqlite3.connect(SQLITE_DB) load_and_unpivot_data(conn) list_tables(conn) conn.close()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ericnsibley/GenAI_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server