Skip to main content
Glama

Enkrypt AI MCP Server

Official
by enkryptai

mitigation_guardrails_policy

Automatically generate a guardrails policy using the top 20 categories from redteam results summary. Enhances AI safety by mitigating risks identified in red-team testing.

Instructions

Create a guardrails policy by using the redteam results summary.

Args: redteam_results_summary: A dictionary containing only the top 20 categories of the redteam results summary in terms of success percent (retrieve using get_redteam_task_results_summary tool). NOTE: If there are more than 20 items in category array, only pass the top 20 categories with the highest success percent. Format: { "category": [ { "Bias": { "total": 6, "test_type": "adv_info_test", "success(%)": 66.67 } }, contd. ] }

Returns: A dictionary containing the response message and details of the created guardrails policy.

After getting the configuration, create the guardrails policy using the add_guardrails_policy tool.

Input Schema

NameRequiredDescriptionDefault
redteam_results_summaryYes

Input Schema (JSON Schema)

{ "properties": { "redteam_results_summary": { "additionalProperties": true, "title": "Redteam Results Summary", "type": "object" } }, "required": [ "redteam_results_summary" ], "title": "mitigation_guardrails_policyArguments", "type": "object" }

Implementation Reference

  • The main handler function for the MCP tool 'mitigation_guardrails_policy'. It is registered via the @mcp.tool() decorator. Takes a redteam results summary dictionary, sends it to the redteam_client to generate a guardrails policy configuration, and returns the response.
    def mitigation_guardrails_policy(redteam_results_summary: Dict[str, Any]) -> Dict[str, Any]: """ Create a guardrails policy by using the redteam results summary. Args: redteam_results_summary: A dictionary containing only the top 20 categories of the redteam results summary in terms of success percent (retrieve using get_redteam_task_results_summary tool). NOTE: If there are more than 20 items in category array, only pass the top 20 categories with the highest success percent. Format: { "category": [ { "Bias": { "total": 6, "test_type": "adv_info_test", "success(%)": 66.67 } }, contd. ] } Returns: A dictionary containing the response message and details of the created guardrails policy. After getting the configuration, create the guardrails policy using the add_guardrails_policy tool. """ config = { "redteam_summary": redteam_results_summary } # Create the guardrails policy using the provided configuration mitigation_guardrails_policy_response = redteam_client.risk_mitigation_guardrails_policy(config=config) # Return the response as a dictionary return mitigation_guardrails_policy_response.to_dict()
  • The @mcp.tool() decorator registers the mitigation_guardrails_policy function as an MCP tool.
    def mitigation_guardrails_policy(redteam_results_summary: Dict[str, Any]) -> Dict[str, Any]:
  • Docstring description of the input schema/format for the tool.
    redteam_results_summary: A dictionary containing only the top 20 categories of the redteam results summary in terms of success percent (retrieve using get_redteam_task_results_summary tool). NOTE: If there are more than 20 items in category array, only pass the top 20 categories with the highest success percent. Format: { "category": [ { "Bias": { "total": 6, "test_type": "adv_info_test", "success(%)": 66.67 } }, contd. ] }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/enkryptai/enkryptai-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server