Skip to main content
Glama
emerzon

MetaTrader5 MCP Server

by emerzon
test_patterns_mass.py1.13 kB
import numpy as np from mtdata.utils.patterns import _mass_distance_profile def _brute_zdist(query: np.ndarray, window: np.ndarray) -> float: q = np.asarray(query, dtype=float) w = np.asarray(window, dtype=float) qz = (q - q.mean()) / q.std() wz = (w - w.mean()) / w.std() return float(np.linalg.norm(qz - wz)) def test_mass_distance_profile_matches_bruteforce(): series = np.array([1.0, 2.0, 4.0, 3.0, 5.0, 7.0]) query = np.array([2.0, 4.0, 3.0]) dist_profile = _mass_distance_profile(query, series) assert dist_profile.shape[0] == len(series) - len(query) + 1 expected = [] for i in range(len(series) - len(query) + 1): window = series[i : i + len(query)] expected.append(_brute_zdist(query, window)) assert np.allclose(dist_profile, expected, atol=1e-6) def test_mass_distance_profile_handles_constant_query(): series = np.arange(10, dtype=float) query = np.ones(4, dtype=float) dist_profile = _mass_distance_profile(query, series) assert dist_profile.shape[0] == len(series) - len(query) + 1 assert np.all(np.isinf(dist_profile))

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emerzon/mt-data-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server