Skip to main content
Glama

GraphRAG MCP

rag_server.py1.35 kB
from pathlib import Path from pprint import pprint import pandas as pd import graphrag.api as api from graphrag.config.load_config import load_config from graphrag.index.typing.pipeline_run_result import PipelineRunResult from typing import Any from mcp.server.fastmcp import FastMCP mcp = FastMCP("rag_ML") USER_AGENT = "rag_ML-app/1.0" @mcp.tool() async def rag_ML(query: str) -> str: """ 用于查询特斯拉与安克创新的对比的相关信息 :param query: 用户提出的具体问题 :return: 最终获得的答案 """ PROJECT_DIRECTORY = "graphrag" graphrag_config = load_config( Path(PROJECT_DIRECTORY) ) entities = pd.read_parquet(f"{PROJECT_DIRECTORY}/output/entities.parquet") communities = pd.read_parquet(f"{PROJECT_DIRECTORY}/output/communities.parquet") community_reports = pd.read_parquet(f"{PROJECT_DIRECTORY}/output/community_reports.parquet") response, context = await api.global_search( config = graphrag_config, entities= entities, communities= communities, community_reports= community_reports, community_level= 2, dynamic_community_selection= False, response_type= "Multiple Paragraphs", query = query, ) return response if __name__ == "__main__": mcp.run(transport='stdio')

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/embracefailure/MCPHub'

If you have feedback or need assistance with the MCP directory API, please join our Discord server