Skip to main content
Glama
egoughnour
by egoughnour

Code Firewall MCP

PyPI Claude Desktop Tests Release Python 3.10+ License: MIT

Top Language Code Size Last Commit Repository Size

A structural similarity-based code security filter for MCP (Model Context Protocol). Blocks dangerous code patterns before they reach execution tools by comparing code structure against a blacklist of known-bad patterns.

How It Works

flowchart LR A[Code<br/>file/string] --> B[Parse & Normalize<br/>tree-sitter] B --> C[Embed<br/>Ollama] C --> D{Similarity Check<br/>vs Blacklist} D -->|β‰₯ threshold| E[🚫 BLOCKED] D -->|< threshold| F[βœ… ALLOWED] F --> G[Execution Tools<br/>rlm_exec, etc.] style E fill:#ff6b6b,color:#fff style F fill:#51cf66,color:#fff style D fill:#339af0,color:#fff
  1. Parse code to Concrete Syntax Tree (CST) using tree-sitter

  2. Normalize by stripping identifiers and literals β†’ structural skeleton

  3. Embed the normalized structure via Ollama

  4. Compare against blacklisted patterns in ChromaDB

  5. Block if similarity exceeds threshold, otherwise allow

Key Insight

Code patterns like os.system("rm -rf /") and os.system("ls") have identical structure. By normalizing away the specific commands/identifiers, we can detect dangerous patterns regardless of the specific arguments used.

Security-sensitive identifiers are preserved during normalization (e.g., eval, exec, os, system, subprocess, Popen, shell) to ensure embeddings remain discriminative for dangerous patterns.

Installation

Quick Start

Option 1: PyPI (Recommended)

uvx code-firewall-mcp # or pip install code-firewall-mcp

Option 2: Claude Desktop One-Click

Download the .mcpb from Releases and double-click to install.

Option 3: From Source

git clone https://github.com/egoughnour/code-firewall-mcp.git cd code-firewall-mcp uv sync

Wire to Claude Code / Claude Desktop

Add to ~/.claude/.mcp.json (Claude Code) or claude_desktop_config.json (Claude Desktop):

{ "mcpServers": { "code-firewall": { "command": "uvx", "args": ["code-firewall-mcp"], "env": { "FIREWALL_DATA_DIR": "~/.code-firewall", "OLLAMA_URL": "http://localhost:11434" } } } }

Requirements

  • Python 3.10+ (< 3.14 due to onnxruntime compatibility)

  • Ollama (for embeddings)

  • ChromaDB (for vector storage)

  • tree-sitter (optional, for better parsing)

Setting Up Ollama (Embeddings)

Code Firewall can automatically install and configure Ollama on macOS with Apple Silicon. There are two installation methods:

Method 1: Homebrew Installation

# 1. Check system requirements firewall_system_check() # 2. Install via Homebrew firewall_setup_ollama(install=True, start_service=True, pull_model=True)

What this does:

  • Installs Ollama via Homebrew (brew install ollama)

  • Starts Ollama as a managed background service

  • Pulls nomic-embed-text model for embeddings

Method 2: Direct Download (No Sudo)

# 1. Check system firewall_system_check() # 2. Install via direct download - no sudo, no Homebrew firewall_setup_ollama_direct(install=True, start_service=True, pull_model=True)

What this does:

  • Downloads Ollama from https://ollama.com

  • Extracts to ~/Applications/ (no admin needed)

  • Starts Ollama via ollama serve

  • Pulls nomic-embed-text model

Manual Setup

# Install Ollama brew install ollama # or download from https://ollama.ai # Start service brew services start ollama # or: ollama serve # Pull embedding model ollama pull nomic-embed-text # Verify firewall_ollama_status()

Tools

Setup & Status Tools

Tool

Purpose

firewall_system_check

Check system requirements β€” verify macOS, Apple Silicon, RAM

firewall_setup_ollama

Install via Homebrew β€” managed service, auto-updates

firewall_setup_ollama_direct

Install via direct download β€” no sudo, fully headless

firewall_ollama_status

Check Ollama availability β€” verify embeddings are ready

Firewall Tools

Tool

Purpose

firewall_check

Check if a code file is safe to execute

firewall_check_code

Check code string directly (no file required)

firewall_blacklist

Add a dangerous pattern to the blacklist

firewall_record_delta

Record near-miss variants for classifier sharpening

firewall_list_patterns

List patterns in blacklist or delta collection

firewall_remove_pattern

Remove a pattern from blacklist or deltas

firewall_status

Get firewall status and statistics

firewall_check

Check if a code file is safe to pass to execution tools.

result = await firewall_check(file_path="/path/to/script.py") # Returns: {allowed: bool, blocked: bool, similarity: float, ...}

firewall_check_code

Check code string directly (no file required).

result = await firewall_check_code( code="import os; os.system('rm -rf /')", language="python" )

firewall_blacklist

Add a dangerous pattern to the blacklist.

result = await firewall_blacklist( code="os.system(arbitrary_command)", reason="Arbitrary command execution", severity="critical" )

firewall_record_delta

Record near-miss variants to sharpen the classifier.

result = await firewall_record_delta( code="subprocess.run(['ls', '-la'])", similar_to="abc123", notes="Legitimate use case for file listing" )

firewall_list_patterns

List patterns in the blacklist or delta collection.

firewall_remove_pattern

Remove a pattern from blacklist or deltas.

firewall_status

Get firewall status and statistics.

Configuration

Environment variables:

Variable

Default

Description

FIREWALL_DATA_DIR

/tmp/code-firewall

Data storage directory

OLLAMA_URL

http://localhost:11434

Ollama server URL

EMBEDDING_MODEL

nomic-embed-text

Ollama embedding model

SIMILARITY_THRESHOLD

0.85

Block threshold (0-1)

NEAR_MISS_THRESHOLD

0.70

Near-miss recording threshold

Usage Pattern

Pre-filter for massive-context-mcp

Use code-firewall-mcp as a gatekeeper before passing code to rlm_exec:

# 1. Check code safety check = await firewall_check_code(user_code) if check["blocked"]: print(f"BLOCKED: {check['reason']}") return # 2. If allowed, proceed with execution result = await rlm_exec(code=user_code, context_name="my-context")

Integrated with massive-context-mcp

Install massive-context-mcp with firewall integration:

pip install massive-context-mcp[firewall]

When enabled, rlm_exec automatically checks code against the firewall before execution.

Building the Blacklist

The blacklist grows through use:

  1. Initial seeding: Add known dangerous patterns

  2. Audit feedback: When rlm_auto_analyze finds security issues, add patterns

  3. Delta sharpening: Record near-misses to improve classification boundaries

# After security audit finds issues await firewall_blacklist( code=dangerous_code, reason="Command injection via subprocess", severity="critical" )

Structural Normalization

flowchart TD subgraph Input A1["os.system('rm -rf /')"] A2["os.system('ls -la')"] A3["os.system(user_cmd)"] end subgraph Normalization B[Strip literals & identifiers<br/>Preserve security keywords] end subgraph Output C["os.system('S')"] end A1 --> B A2 --> B A3 --> B B --> C style C fill:#ff922b,color:#fff

The normalizer strips:

  • Identifiers: my_var β†’ _ (except security-sensitive ones)

  • String literals: "hello" β†’ "S"

  • Numbers: 42 β†’ N

  • Comments: Removed entirely

Preserved identifiers (for better pattern matching):

  • eval, exec, compile, __import__

  • os, system, popen, subprocess, Popen, shell

  • open, read, write, socket, connect

  • getattr, setattr, __globals__, __builtins__

  • And more security-sensitive names...

Example:

# Original subprocess.run(["curl", url, "-o", output_file]) # Normalized (preserves 'subprocess' and 'run') subprocess.run(["S", _, "S", _])

Both subprocess.run(["curl", ...]) and subprocess.run(["wget", ...]) normalize to the same structure, so blacklisting one catches both.

License

MIT

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/egoughnour/code-firewall-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server