Skip to main content
Glama

MCP Multi-Agent Orchestration Server

by ec49ca
QUICKSTART.md2.01 kB
# Quick Start Guide ## Prerequisites 1. **Ollama is running** (should already be running on your system) ```bash # Check if Ollama is running curl http://localhost:11434/api/tags # If not running, start it: ollama serve ``` 2. **Python 3.11+** with virtual environment 3. **Node.js** for the frontend ## Setup Steps ### 1. Backend (MCP Server) ```bash # Navigate to project root cd /path/to/mcp-server-orchestration # Update with your actual path # Activate virtual environment (already created) source venv/bin/activate # Install dependencies (already done, but if needed): pip install -r requirements.txt # Start the MCP server python3 -m uvicorn backend.server.mcp_server:app --reload --host 0.0.0.0 --port 8000 # Or use the startup script: ./start_server.sh ``` The server will start on `http://localhost:8000` ### 2. Frontend (Next.js UI) ```bash # In a new terminal, navigate to frontend cd /path/to/mcp-server-orchestration # Update with your actual path/frontend # Install dependencies (already done, but if needed): npm install # Start the frontend npm run dev ``` The frontend will start on `http://localhost:3000` ## Testing 1. Open `http://localhost:3000` in your browser 2. Type a query like: "What are the contract terms in Italy?" 3. The query will go: Frontend → MCP Server Orchestrator → Agents → Response ## Verify Everything is Working ### Test MCP Server directly: ```bash curl http://localhost:8000/health curl http://localhost:8000/mcp/agents ``` ### Test Orchestrator: ```bash curl -X POST http://localhost:8000/orchestrate \ -H "Content-Type: application/json" \ -d '{"query": "What are the contract terms in Italy?"}' ``` ## Troubleshooting - **Ollama not responding**: Make sure `ollama serve` is running - **Port 8000 in use**: Change PORT in `.env` file - **Port 3000 in use**: Next.js will automatically use the next available port - **Import errors**: Make sure virtual environment is activated and dependencies are installed

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ec49ca/NLP-project-contract-comparison'

If you have feedback or need assistance with the MCP directory API, please join our Discord server