Skip to main content
Glama

MCP Server with LangChain and AI Tools

by durgeshmca
client.pyβ€’1.38 kB
from langchain_mcp_adapters.client import MultiServerMCPClient from langgraph.prebuilt import create_react_agent from langchain_groq import ChatGroq from dotenv import load_dotenv load_dotenv() import asyncio async def main(): client=MultiServerMCPClient( { "math":{ "command":"python", "args":["math_server.py"], ## Ensure correct absolute path "transport":"stdio", }, "weather": { "url": "http://localhost:8000/mcp", # Ensure server is running here "transport": "streamable_http", } } ) tools=await client.get_tools() model=ChatGroq(model="qwen-qwq-32b") agent=create_react_agent( model,tools ) loop = True while(loop): messages = [] print("Type 'quit' to exit") user_input=input("You: ") if(user_input.lower()=="quit"): loop=False break else: message = {"role": "user", "content": user_input} messages.append(message) response = await agent.ainvoke( {"messages": messages} ) print(response['messages'][-1].content) messages.append(response['messages'][-1]) asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/durgeshmca/MCPServerPOCDemo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server