Skip to main content
Glama

apply_vignette

Adds a vignette effect to images, allowing control over strength and output format. Use to enhance or modify visual focus in photos with customizable intensity.

Instructions

应用晕影效果

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
image_sourceYes图片源,可以是文件路径或base64编码的图片数据
output_formatNo输出格式:PNG、JPEG、WEBP 等PNG
strengthNo晕影强度,范围 0.0-1.0,值越大效果越明显

Implementation Reference

  • Core handler function that applies vignette effect by creating a radial gradient mask with Gaussian blur and compositing a colored overlay onto the image.
    async def apply_vignette(arguments: Dict[str, Any]) -> List[TextContent]: """ 为图片添加暗角效果 Args: arguments: 包含图片源和暗角参数的字典 Returns: List[TextContent]: 处理结果 """ try: # 参数验证 image_source = arguments.get("image_source") ensure_valid_image_source(image_source) intensity = arguments.get("intensity", 0.5) radius = arguments.get("radius", 0.7) color = arguments.get("color", "#000000") output_format = arguments.get("output_format", DEFAULT_IMAGE_FORMAT) # 验证参数 validate_numeric_range(intensity, 0.0, 1.0, "intensity") validate_numeric_range(radius, 0.0, 1.0, "radius") validate_color_hex(color) # 加载图片 processor = ImageProcessor() image = processor.load_image(image_source) # 转换为RGBA模式 if image.mode != "RGBA": image = image.convert("RGBA") # 创建暗角遮罩 mask = Image.new("L", image.size, 255) draw = ImageDraw.Draw(mask) # 计算中心点和半径 center_x, center_y = image.width // 2, image.height // 2 max_radius = min(image.width, image.height) // 2 vignette_radius = int(max_radius * radius) # 创建径向渐变 for y in range(image.height): for x in range(image.width): # 计算到中心的距离 distance = ((x - center_x) ** 2 + (y - center_y) ** 2) ** 0.5 # 计算暗角强度 if distance <= vignette_radius: alpha = 255 else: # 在半径外应用渐变 fade_distance = distance - vignette_radius fade_ratio = min(fade_distance / (max_radius - vignette_radius), 1.0) alpha = int(255 * (1 - intensity * fade_ratio)) mask.putpixel((x, y), alpha) # 应用高斯模糊使暗角更自然 mask = mask.filter(ImageFilter.GaussianBlur(radius=max_radius * 0.1)) # 创建暗角图层 vignette_rgb = tuple(int(color[i:i+2], 16) for i in (1, 3, 5)) vignette_layer = Image.new("RGBA", image.size, vignette_rgb + (0,)) # 应用遮罩 vignette_layer.putalpha(mask) # 合成图片 result_image = Image.alpha_composite(image, vignette_layer) # 转换为base64 output_info = processor.output_image(result_image, "border", output_format) return [TextContent( type="text", text=json.dumps({ "success": True, "message": "成功添加暗角效果", "data": { **output_info, "metadata": { "size": f"{image.width}x{image.height}", "intensity": intensity, "radius": radius, "color": color, "format": output_format } } }, ensure_ascii=False) )] except ValidationError as e: return [TextContent( type="text", text=json.dumps({ "success": False, "error": f"参数验证失败: {str(e)}" }, ensure_ascii=False) )] except Exception as e: return [TextContent( type="text", text=json.dumps({ "success": False, "error": f"添加暗角效果失败: {str(e)}" }, ensure_ascii=False) )]
  • main.py:603-623 (registration)
    MCP tool registration using @mcp.tool() decorator, which wraps the effects handler and defines the input schema via Annotated fields.
    @mcp.tool() def apply_vignette( image_source: Annotated[str, Field(description="图片源,可以是文件路径或base64编码的图片数据")], strength: Annotated[float, Field(description="晕影强度,范围 0.0-1.0,值越大效果越明显", ge=0.0, le=1.0, default=0.5)], output_format: Annotated[str, Field(description="输出格式:PNG、JPEG、WEBP 等", default="PNG")] ) -> str: """应用晕影效果""" try: arguments = { "image_source": image_source, "strength": strength, "output_format": output_format } result = safe_run_async(effects_apply_vignette(arguments)) return result[0].text except Exception as e: return json.dumps({ "success": False, "error": f"应用晕影效果失败: {str(e)}" }, ensure_ascii=False, indent=2)
  • JSON schema definition for the apply_vignette tool input parameters, part of get_effect_tools() function.
    Tool( name="apply_vignette", description="为图片添加暗角效果", inputSchema={ "type": "object", "properties": { "image_source": { "type": "string", "description": "图片源(文件路径或base64编码)" }, "intensity": { "type": "number", "description": "暗角强度(0.0-1.0)", "minimum": 0.0, "maximum": 1.0, "default": 0.5 }, "radius": { "type": "number", "description": "暗角半径(0.0-1.0)", "minimum": 0.0, "maximum": 1.0, "default": 0.7 }, "color": { "type": "string", "description": "暗角颜色(十六进制格式)", "default": "#000000" }, "output_format": { "type": "string", "description": "输出格式", "enum": ["PNG", "JPEG", "WEBP"], "default": "PNG" } }, "required": ["image_source"] }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/duke0317/ps-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server