# ๐จ Lanhu MCP Server | ่ๆนMCPๆๅกๅจ
**lanhumcp | lanhu-mcp | Lanhu AI Integration | MCP Server for Lanhu**
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
[](https://modelcontextprotocol.io/)
[](https://github.com/jlowin/fastmcp)
[](CONTRIBUTING.md)
[](https://github.com/dsphper/lanhu-mcp/stargazers)
[](https://github.com/dsphper/lanhu-mcp/issues)
[](https://github.com/dsphper/lanhu-mcp/releases)
[](CODE_OF_CONDUCT.md)
A powerful [Model Context Protocol (MCP)](https://modelcontextprotocol.io/) server for automatically extracting and analyzing Lanhu design documents, including Axure prototypes, UI designs, image slices, with built-in team collaboration message board.
**Perfect integration with:**
**International Mainstream AI IDEs**:
- โ
**Cursor** - Cursor AI directly reads Lanhu requirements and designs
- โ
**Windsurf** - Windsurf Cascade AI directly reads Lanhu documents
- โ
**Claude Desktop** - Claude AI desktop app directly accesses Lanhu
- โ
**Continue** - VSCode/JetBrains AI coding assistant
- โ
**Cline** - Powerful VSCode AI programming plugin
- โ
**GitHub Copilot Workspace** - GitHub AI development environment
**Chinese AI IDEs & Coding Assistants**:
- โ
**ByteDance Trae** - China's first AI-native IDE (Doubao-1.5-pro)
- โ
**Alibaba Tongyi Lingma** - AI assistant based on Tongyi model
- โ
**Tencent CodeBuddy** - Full-cycle AI integrated workbench
- โ
**Baidu Wenxin Kuaima** - Baidu AI coding assistant
- โ
**Kuaishou KwaiCoder** - Kuaishou AI programming tool
- โ
**Zhipu CodeGeeX** - Tsinghua-based AI coding assistant
- โ
**Huawei Cloud CodeArts Snap** - Huawei Cloud AI assistant
- โ
**SenseTime SenseCode** - SenseTime AI programming tool
**Any MCP-compatible AI development tools**
English | [็ฎไฝไธญๆ](README.md)
## โจ Key Features
**๐ SEO Keywords**: lanhu mcp | lanhumcp | lanhu-mcp-server | lanhu ai | lanhu cursor | lanhu windsurf | lanhu claude | lanhu trae | lanhu tongyi | lanhu codebuddy | lanhu cline | lanhu continue | lanhu api | lanhu integration | lanhu axure | mcp server | model context protocol | ai requirement analysis | design collaboration tool | bytedance ai coding | alibaba ai coding | tencent ai coding | baidu ai coding
**Perfect for**: Product Managers | Frontend Developers | Backend Developers | QA Engineers | UI Designers | Cursor Users | Windsurf Users | Claude Users | Trae Users | Tongyi Lingma Users | CodeBuddy Users | Wenxin Kuaima Users | Cline Users | Continue Users | AI Coding Enthusiasts
### ๐ Requirement Document Analysis
- **Smart Document Extraction**: Automatically download and parse all pages, resources, and interactions from Axure prototypes
- **Three Analysis Modes**:
- ๐ง **Developer Perspective**: Detailed field rules, business logic, global flowcharts
- ๐งช **Tester Perspective**: Test scenarios, test cases, boundary values, validation rules
- ๐ **Quick Explorer**: Core function overview, module dependencies, review points
- **Four-Stage Workflow**: Global scan โ Grouped analysis โ Reverse validation โ Generate deliverables
- **Zero Omission Guarantee**: TODO-driven systematic analysis process
### ๐จ UI Design Support
- **Design Viewing**: Batch download and display UI design images
- **Slice Extraction**: Automatically identify and export design slices and icon resources
- **Smart Naming**: Auto-generate semantic filenames based on layer paths
### ๐ฌ Team Collaboration Board - Breaking AI IDE Silos
> ๐ **Core Innovation**: Enable all developers' AI assistants to share team knowledge and context
**Problem Background**:
- Each developer's AI IDE (Cursor, Windsurf) is isolated, cannot share context
- Pitfall encountered by Developer A is unknown to Developer B's AI
- Requirement analysis results cannot be passed to Tester's AI
- Team knowledge is fragmented across chat windows, cannot be accumulated
**Innovative Solution**:
- ๐ **Unified Knowledge Base**: All AI assistants connect to the same MCP server, sharing message board data
- ๐ง **Context Transfer**: Requirements analyzed by Developer's AI can be directly queried by Tester's AI
- ๐ก **Knowledge Accumulation**: Pitfalls, experiences, best practices saved permanently as "Knowledge Base" type
- ๐ **Task Collaboration**: Use "Task" type messages to let AI help query code and database
- ๐จ **@Mention Mechanism**: Support Feishu notifications, bridging AI collaboration and human communication
- ๐ฅ **Collaborator Tracking**: Auto-record which team member's AI accessed which documents, full transparency
### โก Performance Optimization
- **Smart Caching**: Permanent cache mechanism based on document version numbers
- **Incremental Updates**: Only download changed resources
- **Concurrent Processing**: Support batch page screenshots and resource downloads
## ๐ Quick Start
> โ ๏ธ **IMPORTANT: Vision-Capable AI Model Required!**
>
> This project requires AI models with **image recognition and analysis capabilities**. Recommended 2025 mainstream vision models:
> - ๐ค **Claude** (Anthropic)
> - ๐ **GPT** (OpenAI)
> - ๐ **Gemini** (Google)
> - ๐ **Kimi** (Moonshot AI)
> - ๐ฏ **Qwen** (Alibaba)
> - ๐ง **DeepSeek** (DeepSeek)
>
> Text-only models (e.g., GPT-3.5, Claude Instant) are NOT supported.
---
### Prerequisites
- Python 3.10+
- Docker (optional, for containerized deployment)
### Installation
```bash
# Clone the repository
git clone https://github.com/dsphper/lanhu-mcp.git
cd lanhu-mcp
# Install dependencies
pip install -r requirements.txt
# Or use uv (recommended)
uv pip install -r requirements.txt
```
### Configuration
1. **Set Lanhu Cookie** (Required)
```bash
export LANHU_COOKIE="your_lanhu_cookie_here"
```
> ๐ก Get Cookie: Log in to Lanhu web version, open browser developer tools, and copy Cookie from request headers
2. **Configure Feishu Bot** (Optional)
**Method 1: Environment Variable (Recommended, Docker-friendly)**
```bash
export FEISHU_WEBHOOK_URL="https://open.feishu.cn/open-apis/bot/v2/hook/your-webhook-url"
```
**Method 2: Modify Code**
Modify in `lanhu_mcp_server.py`:
```python
DEFAULT_FEISHU_WEBHOOK = "https://open.feishu.cn/open-apis/bot/v2/hook/your-webhook-url"
```
3. **Configure User Mapping** (Optional)
Update `FEISHU_USER_ID_MAP` dictionary to support @mention feature.
4. **Other Environment Variables** (Optional)
```bash
# Server Configuration
export SERVER_HOST="0.0.0.0" # Server listen address
export SERVER_PORT=8000 # Server port
# Data Storage
export DATA_DIR="./data" # Data storage directory
# Performance Tuning
export HTTP_TIMEOUT=30 # HTTP request timeout (seconds)
export VIEWPORT_WIDTH=1920 # Browser viewport width
export VIEWPORT_HEIGHT=1080 # Browser viewport height
# Debug Options
export DEBUG="false" # Debug mode (true/false)
```
> ๐ For complete environment variable documentation, see `config.example.env`
### Running
**Method 1: Direct Run**
```bash
python lanhu_mcp_server.py
```
Server will start at `http://localhost:8000/mcp`.
**Method 2: Docker Deployment**
```bash
docker build -t lanhu-mcp-server .
docker run -p 8000:8000 \
-e LANHU_COOKIE="your_cookie" \
-e FEISHU_WEBHOOK_URL="your_feishu_webhook_url" \
-v $(pwd)/data:/app/data \
lanhu-mcp-server
```
Or use docker-compose:
```bash
# Edit environment variables in docker-compose.yml
docker-compose up -d
```
### Connect to AI Client
Configure in MCP-compatible AI clients (e.g., Claude Code, Cursor, Windsurf):
**Cursor Configuration Example:**
```json
{
"mcpServers": {
"lanhu": {
"url": "http://localhost:8000/mcp?role=Backend&name=John"
}
}
}
```
> ๐ URL Parameters:
> - `role`: User role (Backend/Frontend/Tester/Product, etc.)
> - `name`: User name (for collaboration tracking and @mentions)
## ๐ฏ Team Message Board: Breaking the Last Mile of AI Collaboration
### Why Do We Need a Team Message Board?
In the AI programming era, every developer has their own AI assistant (Cursor, Windsurf, Claude Code). But this brings a **serious problem**:
```
๐ค Pain Point Scenario:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Backend Developer Wang's AI: โ
โ "I've analyzed the login API requirements, โ
โ field validation rules are clear, starting โ
โ to write code..." โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Context Gap
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Tester Li's AI: โ
โ "What? Login API? Let me read the โ
โ requirements again... What do these field โ
โ rules mean? How to test boundary values?" โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
```
**Every AI is doing repetitive work, unable to reuse analysis results from other AIs!**
### How Does Team Message Board Solve This?
**Design Philosophy: Connect all AI assistants to the same "brain"**
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Lanhu MCP Server โ
โ (Unified Knowledge Hub) โ
โ โ
โ ๐ Requirement Analysis โ
โ ๐ Development Pitfalls โ
โ ๐ Test Case Templates โ
โ ๐ก Technical Decisions โ
โโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโผโโโโโโโโโโโโโ
โ โ โ
โโโโโโผโโโโ โโโโโผโโโโโ โโโโผโโโโโโ
โBackend โ โFrontendโ โTester โ
โ AI โ โ AI โ โ AI โ
โโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโ
Cursor Windsurf Claude
```
### Core Use Cases
#### Scenario 1: Sharing Requirement Analysis Results
**Backend AI (Wang) after analyzing requirements:**
```
@Tester_Li @Frontend_Zhang I've analyzed "User Login" requirements, key info:
- Phone required, 11 digits
- Password 6-20 chars, must include letters+numbers
- Verification code 4 digits, valid for 5 minutes
- Lock account for 30 min after 3 failed attempts
[Message Type: knowledge]
```
**Tester AI (Li) queries:**
```
AI: Query all knowledge base messages about "login"
โ Immediately get Wang's AI analysis results, no need to re-read requirements!
```
#### Scenario 2: Development Pitfall Records
**Backend AI (Wang) encounters issue:**
```
[Knowledge Base] Redis Connection Timeout Resolved
Issue: Production Redis frequent timeouts
Cause: Connection pool misconfiguration, maxIdle too small
Solution: Adjust to maxTotal=20, maxIdle=10
[Message Type: knowledge]
```
**Other developers' AI encounter same issue:**
```
AI: Search "Redis timeout" in knowledge base
โ Find solution, avoid repeating mistakes!
```
#### Scenario 3: Cross-Role Task Collaboration
**Product Manager's AI initiates query task:**
```
@Backend_Wang Please check how many test records in user table?
[Message Type: task] // โ ๏ธ Safety: Read-only, no modifications
```
**Backend AI (Wang) sees notification:**
```
AI: Someone mentioned me, view details
โ Execute SELECT COUNT(*) FROM user WHERE status='test'
โ Reply: Total 1234 test records
```
#### Scenario 4: Urgent Issue Broadcast
**DevOps AI discovers production issue:**
```
๐จ URGENT: Production payment API error, investigate immediately!
Time: 2025-01-15 14:30
Symptom: Payment success rate dropped from 99% to 60%
Impact: About 200 orders affected
@Everyone
[Message Type: urgent]
โ Auto-send Feishu notification to all
```
### Message Type Design
| Type | Purpose | Search Strategy | Lifecycle |
|------|---------|----------------|-----------|
| ๐ข **normal** | General notification | Time-based decay | Archive after 7 days |
| ๐ **task** | Query task (Safe: read-only) | Archive after completion | Task lifecycle |
| โ **question** | Needs answer | Pin unanswered | Archive after answered |
| ๐จ **urgent** | Urgent notification | Force push | Downgrade after 24h |
| ๐ก **knowledge** | **Knowledge Base (Core)** | **Permanent searchable** | **Permanent** |
### Security Mechanism
**Task Type Safety Restrictions:**
```python
โ
Allowed Query Operations:
- Query code location, logic
- Query database schema, data
- Query test methods, coverage
- Query TODO, comments
โ Forbidden Dangerous Operations:
- Modify code
- Delete files
- Execute commands
- Commit code
```
### Search and Filtering
**Smart Search (Prevent Context Overflow):**
```python
# Scenario 1: Query all test-related knowledge
lanhu_say_list(
url='all', # Global search
filter_type='knowledge',
search_regex='test|unit test|integration',
limit=20
)
# Scenario 2: Query urgent messages in a project
lanhu_say_list(
url='project_url',
filter_type='urgent',
limit=10
)
# Scenario 3: Find unresolved questions
lanhu_say_list(
url='all',
filter_type='question',
search_regex='pending|unresolved'
)
```
### Collaborator Tracking
**Auto-record team member access history:**
```python
lanhu_get_members(url='project_url')
Returns:
{
"collaborators": [
{
"name": "Wang",
"role": "Backend",
"first_seen": "2025-01-10 09:00:00",
"last_seen": "2025-01-15 16:30:00"
},
{
"name": "Li",
"role": "Tester",
"first_seen": "2025-01-12 10:00:00",
"last_seen": "2025-01-15 14:00:00"
}
]
}
๐ก Use Cases:
- Know which colleagues' AI viewed this requirement
- Discover potential collaborators
- Team transparency
```
### Feishu Notification Integration
**Bridge AI collaboration and human communication:**
```python
# AI auto-sends Feishu notification (when @someone)
lanhu_say(
url='project_url',
summary='Need your code review',
content='Login module password encryption logic, please review',
mentions=['Wang', 'Zhang'] # Must be real names
)
# Feishu group receives:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ๐ข Lanhu Collaboration Notice โ
โ โ
โ ๐ค Publisher: Li (Tester) โ
โ ๐จ Mentions: @Wang @Zhang โ
โ ๐ท๏ธ Type: normal โ
โ ๐ Project: User Center Redesign โ
โ ๐ Document: Login Module โ
โ โ
โ ๐ Content: โ
โ Login module password encryption โ
โ logic, please review โ
โ โ
โ ๐ View Requirement Doc โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
```
### Technical Advantages
1. **Zero Learning Curve**: AI handles automatically, developers just chat naturally
2. **Real-time Sync**: All AI assistants connect to same data source
3. **Global Search**: Query knowledge base across projects
4. **Version Association**: Messages auto-link to document version
5. **Complete Metadata**: Auto-record 10 standard fields (project, doc, author, etc.)
6. **Smart Filtering**: Support regex search, type filtering, quantity limit (prevent token overflow)
---
## ๐ Usage Guide
### Requirement Document Analysis Workflow
**1. Get Page List**
```
Please help me analyze this requirement document:
https://lanhuapp.com/web/#/item/project/product?tid=xxx&pid=xxx&docId=xxx
```
**2. AI Automatically Executes Four-Stage Analysis**
- โ
STAGE 1: Global text scan, build overall understanding
- โ
STAGE 2: Grouped detailed analysis (based on selected mode)
- โ
STAGE 3: Reverse validation, ensure zero omission
- โ
STAGE 4: Generate deliverables (Requirement doc/Test plan/Review PPT)
**3. Get Deliverables**
- Developer Perspective: Detailed requirement doc + Global business flowchart
- Tester Perspective: Test plan + Test case list + Field validation table
- Quick Explorer: Review doc + Module dependency diagram + Discussion points
### UI Design Viewing
```
Please show me this design:
https://lanhuapp.com/web/#/item/project/stage?tid=xxx&pid=xxx
```
### Slice Download
```
Download all slices from "Homepage Design"
```
AI will automatically:
1. Detect project type (React/Vue/Flutter, etc.)
2. Select appropriate output directory
3. Generate semantic filenames
4. Batch download slices
### Team Messages
**Post Message:**
```
@John @Alice Need to confirm the password validation rules for login page
```
**View Messages:**
```
Show all messages that mention me
```
**Filtered Query:**
```
Show all knowledge base messages about "testing"
```
## ๐ ๏ธ Available Tools
| Tool Name | Description | Use Case |
|-----------|-------------|----------|
| `lanhu_resolve_invite_link` | Parse invite link | When user provides share link |
| `lanhu_get_pages` | Get prototype page list | Must call before analyzing requirements |
| `lanhu_get_ai_analyze_page_result` | Analyze prototype page content | Extract requirement details |
| `lanhu_get_designs` | Get UI design list | Must call before viewing designs |
| `lanhu_get_ai_analyze_design_result` | Analyze UI designs | View design drafts |
| `lanhu_get_design_slices` | Get slice information | Download icons and assets |
| `lanhu_say` | Post message | Team collaboration, @mentions |
| `lanhu_say_list` | View message list | Query message history |
| `lanhu_say_detail` | View message details | View full content |
| `lanhu_say_edit` | Edit message | Modify published messages |
| `lanhu_say_delete` | Delete message | Remove messages |
| `lanhu_get_members` | View collaborators | View team members |
## ๐ Project Structure
```
lanhu-mcp-server/
โโโ lanhu_mcp_server.py # Main server file
โโโ requirements.txt # Python dependencies
โโโ Dockerfile # Docker image
โโโ data/ # Data storage directory
โ โโโ messages/ # Message data
โ โโโ axure_extract_*/ # Axure resource cache
โ โโโ lanhu_designs/ # Design cache
โโโ logs/ # Log files
โโโ README.md # This document
```
## ๐ง Advanced Configuration
### Custom Role Mapping
Modify `ROLE_MAPPING_RULES` in code to support more roles:
```python
ROLE_MAPPING_RULES = [
(["backend", "server"], "Backend"),
(["frontend", "web"], "Frontend"),
# Add more rules...
]
```
### Cache Control
Cache directory is controlled by environment variable `DATA_DIR`:
```bash
export DATA_DIR="/path/to/cache"
```
### Feishu Notification Customization
Customize message format and style in `send_feishu_notification()` function.
## ๐ค AI Assistant Integration
This project is designed for AI assistants with built-in "ErGou" assistant persona:
- ๐ฏ **Smart Analysis**: Automatically identify document types and best analysis modes
- ๐ **TODO-Driven**: Systematic workflow based on task lists
- ๐ฃ๏ธ **Natural Interaction**: Friendly conversational experience
- โจ **Proactive Service**: No manual operations needed, AI completes the full process
## ๐ Performance Metrics
- โก Page Screenshot: ~2 seconds/page (with cache)
- ๐พ Resource Download: Support resume and incremental updates
- ๐ Cache Hit: Permanent cache based on version numbers
- ๐ฆ Batch Processing: Support concurrent downloads and analysis
## ๐ FAQ
<details>
<summary><b>Q: What if Cookie expires?</b></summary>
A: Re-login to Lanhu web version, get new Cookie and update environment variable or config file.
</details>
<details>
<summary><b>Q: Screenshot fails or shows blank?</b></summary>
A: Ensure Playwright browsers are installed:
```bash
playwright install chromium
```
</details>
<details>
<summary><b>Q: Feishu notification fails?</b></summary>
A: Check:
1. Webhook URL is correct
2. Feishu bot is added to the group
3. User ID mapping is correctly configured
</details>
<details>
<summary><b>Q: How to clear cache?</b></summary>
A: Delete corresponding cache files in `data/` directory. System will automatically re-download.
</details>
## ๐ Security Notes
- โ ๏ธ **Cookie Security**: Do not commit config files containing cookies to public repositories
- ๐ **Access Control**: Recommend deploying in intranet or configuring firewall rules
- ๐ **Data Privacy**: Message data is stored locally, please keep it safe
## ๐ค Contributing
Contributions are welcome! Please follow these steps:
1. Fork this repository
2. Create feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to branch (`git push origin feature/AmazingFeature`)
5. Open Pull Request
### Development Guide
```bash
# Install development dependencies
pip install -r requirements.txt
# Run tests
python -m pytest tests/
# Code formatting
black lanhu_mcp_server.py
```
## ๐ License
This project is licensed under the MIT License - see [LICENSE](LICENSE) file for details.
## ๐ Acknowledgments
- [FastMCP](https://github.com/jlowin/fastmcp) - Excellent MCP server framework
- [Playwright](https://playwright.dev/) - Reliable browser automation tool
- [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) - HTML parsing tool
- Lanhu Team - Providing quality design collaboration platform
## ๐ฎ Contact
- Submit Issue: [GitHub Issues](https://github.com/dsphper/lanhu-mcp/issues)
- Email: dsphper@gmail.com
## ๐บ๏ธ Roadmap
- [ ] Support more design platforms (Figma, Sketch)
- [ ] Web management interface
- [ ] More analysis dimensions (Effort estimation, Tech stack recommendations)
- [ ] Enterprise-level permission management
- [ ] API documentation auto-generation
- [ ] Internationalization support
---
<p align="center">
If this project helps you, please give it a โญ๏ธ
</p>
<p align="center">
Made with โค๏ธ by the Lanhu MCP Team
</p>
---
## โ ๏ธ Disclaimer
This project (Lanhu MCP Server) is a **third-party open source project**, independently developed and maintained by community developers, and **is NOT an official Lanhu product**.
**Important Notes:**
- This project has no official affiliation or partnership with Lanhu (่ๆน) company
- This project interacts with the Lanhu platform through public web interfaces, without any unauthorized access
- Using this project requires you to have a legitimate Lanhu account and access permissions
- Please comply with Lanhu platform's terms of service and usage policies
- This project is for learning and research purposes only, users assume all risks of use
- Developers are not responsible for any data loss, account issues, or other damages caused by using this project
**Data and Privacy:**
- This project processes and caches data locally, and does not transmit your data to third-party servers
- Your Lanhu Cookie and project data are only stored in your local environment
- Please keep your credentials secure and do not share them with others
**Open Source License:**
- This project is licensed under the MIT License, provided "as is" without warranty of any kind
- See [LICENSE](LICENSE) file for details
If you have any questions or suggestions, please feel free to communicate with us through [GitHub Issues](https://github.com/dsphper/lanhu-mcp/issues).
---
## ๐ท๏ธ Tags
`lanhumcp` `lanhu-mcp` `lanhu-ai` `mcp-server` `cursor-plugin` `windsurf-integration` `claude-integration` `trae-integration` `tongyi-lingma` `codebuddy` `cline-plugin` `continue-plugin` `axure-automation` `requirement-analysis` `design-collaboration` `ai-development-tools` `model-context-protocol` `lanhu-api` `lanhu-cursor` `lanhu-windsurf` `lanhu-claude` `ai-coding-assistant` `design-handoff` `prototype-analysis` `bytedance-ai` `alibaba-ai` `tencent-ai` `baidu-ai`
---
## ๐ Common Search Questions
- **How to connect Cursor AI with Lanhu?** โ Use Lanhu MCP Server
- **Windsurf Lanhu integration?** โ Configure this MCP server
- **Claude Code read Axure prototypes?** โ Install Lanhu MCP
- **ByteDance Trae Lanhu connection?** โ Use this MCP server
- **Alibaba Tongyi Lingma Lanhu integration?** โ Configure Lanhu MCP
- **Tencent CodeBuddy support Lanhu?** โ Connect via MCP protocol
- **Baidu Wenxin Kuaima integrate Lanhu?** โ Use this project
- **Cline plugin access Lanhu?** โ Configure MCP server
- **Lanhu API for AI tools?** โ This project provides MCP interface
- **Automated slice extraction from Lanhu?** โ Use slice tools in this project
- **AI automated test case generation?** โ Use tester analysis mode
- **่ๆน Cursor ้ๆ๏ผ** โ ๅฎ่ฃ
Lanhu MCP Server
- **ๅฆไฝ่ฎฉ AI ่ฏปๅ่ๆน้ๆฑ๏ผ** โ ไฝฟ็จๆฌ MCP ๆๅกๅจ
- **ๅญ่ Trae ่ๆน่ฟๆฅ๏ผ** โ ้
็ฝฎๆฌ MCP ๆๅกๅจ
- **้ไน็ต็ ่ๆน้ๆ๏ผ** โ ไฝฟ็จ Lanhu MCP
---
<!-- Last checked: 2026-01-31 12:43 -->